| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isausgren | GIF version | ||
| Description: The property of an ordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.) |
| Ref | Expression |
|---|---|
| ausgr.1 | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} |
| Ref | Expression |
|---|---|
| isausgren | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸) | |
| 2 | pweq 3652 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉) | |
| 3 | 2 | adantr 276 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉) |
| 4 | 3 | rabeqdv 2793 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 5 | 1, 4 | sseq12d 3255 | . 2 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 6 | ausgr.1 | . 2 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} | |
| 7 | 5, 6 | brabga 4352 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 𝒫 cpw 3649 class class class wbr 4083 {copab 4144 2oc2o 6556 ≈ cen 6885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 |
| This theorem is referenced by: ausgrusgrben 15966 usgrausgrien 15967 ausgrumgrien 15968 ausgrusgrien 15969 |
| Copyright terms: Public domain | W3C validator |