| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isausgren | GIF version | ||
| Description: The property of an ordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.) |
| Ref | Expression |
|---|---|
| ausgr.1 | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} |
| Ref | Expression |
|---|---|
| isausgren | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸) | |
| 2 | pweq 3630 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉) | |
| 3 | 2 | adantr 276 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉) |
| 4 | 3 | rabeqdv 2771 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 5 | 1, 4 | sseq12d 3233 | . 2 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 6 | ausgr.1 | . 2 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} | |
| 7 | 5, 6 | brabga 4329 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 {crab 2490 ⊆ wss 3175 𝒫 cpw 3627 class class class wbr 4060 {copab 4121 2oc2o 6521 ≈ cen 6850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-pow 4235 ax-pr 4270 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2779 df-un 3179 df-in 3181 df-ss 3188 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-br 4061 df-opab 4123 |
| This theorem is referenced by: ausgrusgrben 15923 usgrausgrien 15924 ausgrumgrien 15925 ausgrusgrien 15926 |
| Copyright terms: Public domain | W3C validator |