ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrngd Unicode version

Theorem iscrngd 13226
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
isringd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isringd.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
isringd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isringd.g  |-  ( ph  ->  R  e.  Grp )
isringd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
isringd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
isringd.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
isringd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
isringd.u  |-  ( ph  ->  .1.  e.  B )
isringd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
isringd.h  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
iscrngd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
Assertion
Ref Expression
iscrngd  |-  ( ph  ->  R  e.  CRing )
Distinct variable groups:    x,  .1.    x, y, z, B    ph, x, y, z    x, R, y, z
Allowed substitution hints:    .+ ( x, y,
z)    .x. ( x, y, z)    .1. ( y, z)

Proof of Theorem iscrngd
StepHypRef Expression
1 isringd.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
2 isringd.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  R ) )
3 isringd.t . . 3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
4 isringd.g . . 3  |-  ( ph  ->  R  e.  Grp )
5 isringd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
6 isringd.a . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
7 isringd.d . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
8 isringd.e . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
9 isringd.u . . 3  |-  ( ph  ->  .1.  e.  B )
10 isringd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
11 isringd.h . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11isringd 13225 . 2  |-  ( ph  ->  R  e.  Ring )
13 eqid 2177 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
14 eqid 2177 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
1513, 14mgpbasg 13141 . . . . 5  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (mulGrp `  R
) ) )
1612, 15syl 14 . . . 4  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
171, 16eqtrd 2210 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  R )
) )
18 eqid 2177 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
1913, 18mgpplusgg 13139 . . . . 5  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
2012, 19syl 14 . . . 4  |-  ( ph  ->  ( .r `  R
)  =  ( +g  `  (mulGrp `  R )
) )
213, 20eqtrd 2210 . . 3  |-  ( ph  ->  .x.  =  ( +g  `  (mulGrp `  R )
) )
2217, 21, 5, 6, 9, 10, 11ismndd 12843 . . 3  |-  ( ph  ->  (mulGrp `  R )  e.  Mnd )
23 iscrngd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
2417, 21, 22, 23iscmnd 13106 . 2  |-  ( ph  ->  (mulGrp `  R )  e. CMnd )
2513iscrng 13191 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
2612, 24, 25sylanbrc 417 1  |-  ( ph  ->  R  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   .rcmulr 12539   Grpcgrp 12882  CMndccmn 13093  mulGrpcmgp 13135   Ringcrg 13184   CRingccrg 13185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-cmn 13095  df-mgp 13136  df-ring 13186  df-cring 13187
This theorem is referenced by:  cncrng  13502
  Copyright terms: Public domain W3C validator