ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrngd Unicode version

Theorem iscrngd 13541
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
isringd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isringd.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
isringd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isringd.g  |-  ( ph  ->  R  e.  Grp )
isringd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
isringd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
isringd.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
isringd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
isringd.u  |-  ( ph  ->  .1.  e.  B )
isringd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
isringd.h  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
iscrngd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
Assertion
Ref Expression
iscrngd  |-  ( ph  ->  R  e.  CRing )
Distinct variable groups:    x,  .1.    x, y, z, B    ph, x, y, z    x, R, y, z
Allowed substitution hints:    .+ ( x, y,
z)    .x. ( x, y, z)    .1. ( y, z)

Proof of Theorem iscrngd
StepHypRef Expression
1 isringd.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
2 isringd.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  R ) )
3 isringd.t . . 3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
4 isringd.g . . 3  |-  ( ph  ->  R  e.  Grp )
5 isringd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
6 isringd.a . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
7 isringd.d . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
8 isringd.e . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
9 isringd.u . . 3  |-  ( ph  ->  .1.  e.  B )
10 isringd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
11 isringd.h . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11isringd 13540 . 2  |-  ( ph  ->  R  e.  Ring )
13 eqid 2193 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
14 eqid 2193 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
1513, 14mgpbasg 13425 . . . . 5  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (mulGrp `  R
) ) )
1612, 15syl 14 . . . 4  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
171, 16eqtrd 2226 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  R )
) )
18 eqid 2193 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
1913, 18mgpplusgg 13423 . . . . 5  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
2012, 19syl 14 . . . 4  |-  ( ph  ->  ( .r `  R
)  =  ( +g  `  (mulGrp `  R )
) )
213, 20eqtrd 2226 . . 3  |-  ( ph  ->  .x.  =  ( +g  `  (mulGrp `  R )
) )
2217, 21, 5, 6, 9, 10, 11ismndd 13021 . . 3  |-  ( ph  ->  (mulGrp `  R )  e.  Mnd )
23 iscrngd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
2417, 21, 22, 23iscmnd 13371 . 2  |-  ( ph  ->  (mulGrp `  R )  e. CMnd )
2513iscrng 13502 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
2612, 24, 25sylanbrc 417 1  |-  ( ph  ->  R  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   Grpcgrp 13075  CMndccmn 13357  mulGrpcmgp 13419   Ringcrg 13495   CRingccrg 13496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-cmn 13359  df-mgp 13420  df-ring 13497  df-cring 13498
This theorem is referenced by:  cncrng  14068
  Copyright terms: Public domain W3C validator