ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrngd Unicode version

Theorem iscrngd 13837
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
isringd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isringd.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
isringd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isringd.g  |-  ( ph  ->  R  e.  Grp )
isringd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
isringd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
isringd.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
isringd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
isringd.u  |-  ( ph  ->  .1.  e.  B )
isringd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
isringd.h  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
iscrngd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
Assertion
Ref Expression
iscrngd  |-  ( ph  ->  R  e.  CRing )
Distinct variable groups:    x,  .1.    x, y, z, B    ph, x, y, z    x, R, y, z
Allowed substitution hints:    .+ ( x, y,
z)    .x. ( x, y, z)    .1. ( y, z)

Proof of Theorem iscrngd
StepHypRef Expression
1 isringd.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
2 isringd.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  R ) )
3 isringd.t . . 3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
4 isringd.g . . 3  |-  ( ph  ->  R  e.  Grp )
5 isringd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
6 isringd.a . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
7 isringd.d . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
8 isringd.e . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
9 isringd.u . . 3  |-  ( ph  ->  .1.  e.  B )
10 isringd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
11 isringd.h . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11isringd 13836 . 2  |-  ( ph  ->  R  e.  Ring )
13 eqid 2205 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
14 eqid 2205 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
1513, 14mgpbasg 13721 . . . . 5  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (mulGrp `  R
) ) )
1612, 15syl 14 . . . 4  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
171, 16eqtrd 2238 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  R )
) )
18 eqid 2205 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
1913, 18mgpplusgg 13719 . . . . 5  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
2012, 19syl 14 . . . 4  |-  ( ph  ->  ( .r `  R
)  =  ( +g  `  (mulGrp `  R )
) )
213, 20eqtrd 2238 . . 3  |-  ( ph  ->  .x.  =  ( +g  `  (mulGrp `  R )
) )
2217, 21, 5, 6, 9, 10, 11ismndd 13302 . . 3  |-  ( ph  ->  (mulGrp `  R )  e.  Mnd )
23 iscrngd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
2417, 21, 22, 23iscmnd 13667 . 2  |-  ( ph  ->  (mulGrp `  R )  e. CMnd )
2513iscrng 13798 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
2612, 24, 25sylanbrc 417 1  |-  ( ph  ->  R  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   .rcmulr 12943   Grpcgrp 13365  CMndccmn 13653  mulGrpcmgp 13715   Ringcrg 13791   CRingccrg 13792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-plusg 12955  df-mulr 12956  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-cmn 13655  df-mgp 13716  df-ring 13793  df-cring 13794
This theorem is referenced by:  cncrng  14364
  Copyright terms: Public domain W3C validator