ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringmgp Unicode version

Theorem ringmgp 13764
Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
ringmgp  |-  ( R  e.  Ring  ->  G  e. 
Mnd )

Proof of Theorem ringmgp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 ringmgp.g . . 3  |-  G  =  (mulGrp `  R )
3 eqid 2205 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2205 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
51, 2, 3, 4isring 13762 . 2  |-  ( R  e.  Ring  <->  ( R  e. 
Grp  /\  G  e.  Mnd  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
65simp2bi 1016 1  |-  ( R  e.  Ring  ->  G  e. 
Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   Mndcmnd 13248   Grpcgrp 13332  mulGrpcmgp 13682   Ringcrg 13758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-mulr 12923  df-ring 13760
This theorem is referenced by:  mgpf  13773  ringcl  13775  iscrng2  13777  ringass  13778  ringideu  13779  ringidcl  13782  ringidmlem  13784  ringsrg  13809  unitsubm  13881  invrpropdg  13911  dfrhm2  13916  isrhm2d  13927  subrgcrng  13987  subrgsubm  13996  subrgugrp  14002  issubrg3  14009  cnfldexp  14339
  Copyright terms: Public domain W3C validator