ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnflt0 Unicode version

Theorem mnflt0 9941
Description: Minus infinity is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnflt0  |- -oo  <  0

Proof of Theorem mnflt0
StepHypRef Expression
1 0re 8107 . 2  |-  0  e.  RR
2 mnflt 9940 . 2  |-  ( 0  e.  RR  -> -oo  <  0 )
31, 2ax-mp 5 1  |- -oo  <  0
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   class class class wbr 4059   RRcr 7959   0cc0 7960   -oocmnf 8140    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-1re 8054  ax-addrcl 8057  ax-rnegex 8069
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147
This theorem is referenced by:  ge0gtmnf  9980  xsubge0  10038
  Copyright terms: Public domain W3C validator