ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnflt0 Unicode version

Theorem mnflt0 9976
Description: Minus infinity is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnflt0  |- -oo  <  0

Proof of Theorem mnflt0
StepHypRef Expression
1 0re 8142 . 2  |-  0  e.  RR
2 mnflt 9975 . 2  |-  ( 0  e.  RR  -> -oo  <  0 )
31, 2ax-mp 5 1  |- -oo  <  0
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   class class class wbr 4082   RRcr 7994   0cc0 7995   -oocmnf 8175    < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-1re 8089  ax-addrcl 8092  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182
This theorem is referenced by:  ge0gtmnf  10015  xsubge0  10073
  Copyright terms: Public domain W3C validator