| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnflt0 | GIF version | ||
| Description: Minus infinity is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnflt0 | ⊢ -∞ < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8154 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | mnflt 9987 | . 2 ⊢ (0 ∈ ℝ → -∞ < 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -∞ < 0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 class class class wbr 4083 ℝcr 8006 0cc0 8007 -∞cmnf 8187 < clt 8189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-1re 8101 ax-addrcl 8104 ax-rnegex 8116 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 |
| This theorem is referenced by: ge0gtmnf 10027 xsubge0 10085 |
| Copyright terms: Public domain | W3C validator |