ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimo Unicode version

Theorem limcimo 14104
Description: Conditions which ensure there is at most one limit value of 
F at  B. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f  |-  ( ph  ->  F : A --> CC )
limcflf.a  |-  ( ph  ->  A  C_  CC )
limcimo.b  |-  ( ph  ->  B  e.  CC )
limcimo.bc  |-  ( ph  ->  B  e.  C )
limcimo.bs  |-  ( ph  ->  B  e.  S )
limcimo.c  |-  ( ph  ->  C  e.  ( Kt  S ) )
limcimo.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
limcimo.ca  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
limcflfcntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
limcimo  |-  ( ph  ->  E* x  x  e.  ( F lim CC  B
) )
Distinct variable groups:    x, B    B, q    C, q    x, F    ph, x
Allowed substitution hints:    ph( q)    A( x, q)    C( x)    S( x, q)    F( q)    K( x, q)

Proof of Theorem limcimo
Dummy variables  e  z  f  g  w  d  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4007 . . . . . . . . . 10  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( ( abs `  ( ( F `
 z )  -  x ) )  < 
e  <->  ( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
21imbi2d 230 . . . . . . . . 9  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  e )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )
32rexralbidv 2503 . . . . . . . 8  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e )  <->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )
4 limcflf.f . . . . . . . . . . . . 13  |-  ( ph  ->  F : A --> CC )
5 limcflf.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  CC )
6 limcimo.b . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  CC )
74, 5, 6ellimc3ap 14100 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( F lim CC  B )  <-> 
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e ) ) ) )
87biimpa 296 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( F lim CC  B ) )  ->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  e ) ) )
98adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  e
) ) )
109simprd 114 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  e ) )
1110adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e ) )
129simpld 112 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  e.  CC )
1312adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  x  e.  CC )
144, 5, 6ellimc3ap 14100 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( y  e.  ( F lim CC  B )  <-> 
( y  e.  CC  /\ 
A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f ) ) ) )
1514biimpa 296 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( F lim CC  B ) )  ->  ( y  e.  CC  /\  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  f ) ) )
1615adantrl 478 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
y  e.  CC  /\  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B
) )  <  g
)  ->  ( abs `  ( ( F `  w )  -  y
) )  <  f
) ) )
1716simpld 112 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  y  e.  CC )
1817adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  y  e.  CC )
1913, 18subcld 8267 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( x  -  y )  e.  CC )
20 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  x #  y )
2113, 18, 20subap0d 8600 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( x  -  y ) #  0 )
2219, 21absrpclapd 11196 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  e.  RR+ )
2322rphalfcld 9708 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( ( abs `  ( x  -  y
) )  /  2
)  e.  RR+ )
243, 11, 23rspcdva 2846 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
25 breq2 4007 . . . . . . . . . . . 12  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( ( abs `  ( ( F `
 w )  -  y ) )  < 
f  <->  ( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
2625imbi2d 230 . . . . . . . . . . 11  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  f )  <-> 
( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )
2726rexralbidv 2503 . . . . . . . . . 10  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f )  <->  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B
) )  <  g
)  ->  ( abs `  ( ( F `  w )  -  y
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )
2816simprd 114 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  f ) )
2928adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f ) )
3027, 29, 23rspcdva 2846 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
3130adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  ( d  e.  RR+  /\  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )  ->  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
324ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  F : A --> CC )
335ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A  C_  CC )
346ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  CC )
35 limcimo.bc . . . . . . . . . 10  |-  ( ph  ->  B  e.  C )
3635ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  C )
37 limcimo.bs . . . . . . . . . 10  |-  ( ph  ->  B  e.  S )
3837ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  S )
39 limcimo.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( Kt  S ) )
4039ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  C  e.  ( Kt  S ) )
41 limcimo.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  { RR ,  CC } )
4241ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  S  e.  { RR ,  CC } )
43 limcimo.ca . . . . . . . . . 10  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
4443ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  { q  e.  C  |  q #  B }  C_  A
)
45 limcflfcntop.k . . . . . . . . 9  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
46 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  d  e.  RR+ )
47 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  e.  ( F lim CC  B
) )
4847ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  x  e.  ( F lim CC  B
) )
49 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  y  e.  ( F lim CC  B
) )
5049ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  y  e.  ( F lim CC  B
) )
51 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
52 simprl 529 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  g  e.  RR+ )
53 simprr 531 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
5432, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 53limcimolemlt 14103 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  ( abs `  ( x  -  y ) )  < 
( abs `  (
x  -  y ) ) )
5531, 54rexlimddv 2599 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  ( d  e.  RR+  /\  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )  -> 
( abs `  (
x  -  y ) )  <  ( abs `  ( x  -  y
) ) )
5624, 55rexlimddv 2599 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  <  ( abs `  ( x  -  y
) ) )
5722rpred 9695 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  e.  RR )
5857ltnrd 8068 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  -.  ( abs `  ( x  -  y
) )  <  ( abs `  ( x  -  y ) ) )
5956, 58pm2.65da 661 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  -.  x #  y )
60 apti 8578 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  y  <->  -.  x #  y )
)
6112, 17, 60syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
x  =  y  <->  -.  x #  y ) )
6259, 61mpbird 167 . . . 4  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  =  y )
6362ex 115 . . 3  |-  ( ph  ->  ( ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
6463alrimivv 1875 . 2  |-  ( ph  ->  A. x A. y
( ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
65 eleq1w 2238 . . 3  |-  ( x  =  y  ->  (
x  e.  ( F lim
CC  B )  <->  y  e.  ( F lim CC  B ) ) )
6665mo4 2087 . 2  |-  ( E* x  x  e.  ( F lim CC  B )  <->  A. x A. y ( ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
6764, 66sylibr 134 1  |-  ( ph  ->  E* x  x  e.  ( F lim CC  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   E*wmo 2027    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3129   {cpr 3593   class class class wbr 4003    o. ccom 4630   -->wf 5212   ` cfv 5216  (class class class)co 5874   CCcc 7808   RRcr 7809    < clt 7991    - cmin 8127   # cap 8537    / cdiv 8628   2c2 8969   RR+crp 9652   abscabs 11005   ↾t crest 12687   MetOpencmopn 13415   lim CC climc 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-map 6649  df-pm 6650  df-sup 6982  df-inf 6983  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-xneg 9771  df-xadd 9772  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-rest 12689  df-topgen 12708  df-psmet 13417  df-xmet 13418  df-met 13419  df-bl 13420  df-mopn 13421  df-top 13468  df-topon 13481  df-bases 13513  df-limced 14095
This theorem is referenced by:  dvfgg  14127
  Copyright terms: Public domain W3C validator