ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimo Unicode version

Theorem limcimo 12677
Description: Conditions which ensure there is at most one limit value of 
F at  B. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f  |-  ( ph  ->  F : A --> CC )
limcflf.a  |-  ( ph  ->  A  C_  CC )
limcimo.b  |-  ( ph  ->  B  e.  CC )
limcimo.bc  |-  ( ph  ->  B  e.  C )
limcimo.bs  |-  ( ph  ->  B  e.  S )
limcimo.c  |-  ( ph  ->  C  e.  ( Kt  S ) )
limcimo.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
limcimo.ca  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
limcflfcntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
limcimo  |-  ( ph  ->  E* x  x  e.  ( F lim CC  B
) )
Distinct variable groups:    x, B    B, q    C, q    x, F    ph, x
Allowed substitution hints:    ph( q)    A( x, q)    C( x)    S( x, q)    F( q)    K( x, q)

Proof of Theorem limcimo
Dummy variables  e  z  f  g  w  d  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3901 . . . . . . . . . 10  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( ( abs `  ( ( F `
 z )  -  x ) )  < 
e  <->  ( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
21imbi2d 229 . . . . . . . . 9  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  e )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )
32rexralbidv 2436 . . . . . . . 8  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e )  <->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )
4 limcflf.f . . . . . . . . . . . . 13  |-  ( ph  ->  F : A --> CC )
5 limcflf.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  CC )
6 limcimo.b . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  CC )
74, 5, 6ellimc3ap 12673 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( F lim CC  B )  <-> 
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e ) ) ) )
87biimpa 292 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( F lim CC  B ) )  ->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  e ) ) )
98adantrr 468 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  e
) ) )
109simprd 113 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  e ) )
1110adantr 272 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e ) )
129simpld 111 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  e.  CC )
1312adantr 272 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  x  e.  CC )
144, 5, 6ellimc3ap 12673 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( y  e.  ( F lim CC  B )  <-> 
( y  e.  CC  /\ 
A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f ) ) ) )
1514biimpa 292 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( F lim CC  B ) )  ->  ( y  e.  CC  /\  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  f ) ) )
1615adantrl 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
y  e.  CC  /\  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B
) )  <  g
)  ->  ( abs `  ( ( F `  w )  -  y
) )  <  f
) ) )
1716simpld 111 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  y  e.  CC )
1817adantr 272 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  y  e.  CC )
1913, 18subcld 8037 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( x  -  y )  e.  CC )
20 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  x #  y )
2113, 18, 20subap0d 8368 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( x  -  y ) #  0 )
2219, 21absrpclapd 10900 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  e.  RR+ )
2322rphalfcld 9442 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( ( abs `  ( x  -  y
) )  /  2
)  e.  RR+ )
243, 11, 23rspcdva 2766 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
25 breq2 3901 . . . . . . . . . . . 12  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( ( abs `  ( ( F `
 w )  -  y ) )  < 
f  <->  ( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
2625imbi2d 229 . . . . . . . . . . 11  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  f )  <-> 
( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )
2726rexralbidv 2436 . . . . . . . . . 10  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f )  <->  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B
) )  <  g
)  ->  ( abs `  ( ( F `  w )  -  y
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )
2816simprd 113 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  f ) )
2928adantr 272 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f ) )
3027, 29, 23rspcdva 2766 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
3130adantr 272 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  ( d  e.  RR+  /\  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )  ->  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
324ad4antr 483 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  F : A --> CC )
335ad4antr 483 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A  C_  CC )
346ad4antr 483 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  CC )
35 limcimo.bc . . . . . . . . . 10  |-  ( ph  ->  B  e.  C )
3635ad4antr 483 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  C )
37 limcimo.bs . . . . . . . . . 10  |-  ( ph  ->  B  e.  S )
3837ad4antr 483 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  S )
39 limcimo.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( Kt  S ) )
4039ad4antr 483 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  C  e.  ( Kt  S ) )
41 limcimo.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  { RR ,  CC } )
4241ad4antr 483 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  S  e.  { RR ,  CC } )
43 limcimo.ca . . . . . . . . . 10  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
4443ad4antr 483 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  { q  e.  C  |  q #  B }  C_  A
)
45 limcflfcntop.k . . . . . . . . 9  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
46 simplrl 507 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  d  e.  RR+ )
47 simprl 503 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  e.  ( F lim CC  B
) )
4847ad3antrrr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  x  e.  ( F lim CC  B
) )
49 simprr 504 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  y  e.  ( F lim CC  B
) )
5049ad3antrrr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  y  e.  ( F lim CC  B
) )
51 simplrr 508 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
52 simprl 503 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  g  e.  RR+ )
53 simprr 504 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
5432, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 53limcimolemlt 12676 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  ( abs `  ( x  -  y ) )  < 
( abs `  (
x  -  y ) ) )
5531, 54rexlimddv 2529 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  ( d  e.  RR+  /\  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )  -> 
( abs `  (
x  -  y ) )  <  ( abs `  ( x  -  y
) ) )
5624, 55rexlimddv 2529 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  <  ( abs `  ( x  -  y
) ) )
5722rpred 9429 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  e.  RR )
5857ltnrd 7839 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  -.  ( abs `  ( x  -  y
) )  <  ( abs `  ( x  -  y ) ) )
5956, 58pm2.65da 633 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  -.  x #  y )
60 apti 8347 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  y  <->  -.  x #  y )
)
6112, 17, 60syl2anc 406 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
x  =  y  <->  -.  x #  y ) )
6259, 61mpbird 166 . . . 4  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  =  y )
6362ex 114 . . 3  |-  ( ph  ->  ( ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
6463alrimivv 1829 . 2  |-  ( ph  ->  A. x A. y
( ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
65 eleq1w 2176 . . 3  |-  ( x  =  y  ->  (
x  e.  ( F lim
CC  B )  <->  y  e.  ( F lim CC  B ) ) )
6665mo4 2036 . 2  |-  ( E* x  x  e.  ( F lim CC  B )  <->  A. x A. y ( ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
6764, 66sylibr 133 1  |-  ( ph  ->  E* x  x  e.  ( F lim CC  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1312    = wceq 1314    e. wcel 1463   E*wmo 1976   A.wral 2391   E.wrex 2392   {crab 2395    C_ wss 3039   {cpr 3496   class class class wbr 3897    o. ccom 4511   -->wf 5087   ` cfv 5091  (class class class)co 5740   CCcc 7582   RRcr 7583    < clt 7764    - cmin 7897   # cap 8306    / cdiv 8392   2c2 8728   RR+crp 9390   abscabs 10709   ↾t crest 12015   MetOpencmopn 12049   lim CC climc 12666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-map 6510  df-pm 6511  df-sup 6837  df-inf 6838  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-xneg 9499  df-xadd 9500  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-rest 12017  df-topgen 12036  df-psmet 12051  df-xmet 12052  df-met 12053  df-bl 12054  df-mopn 12055  df-top 12060  df-topon 12073  df-bases 12105  df-limced 12668
This theorem is referenced by:  dvfgg  12700
  Copyright terms: Public domain W3C validator