ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimo Unicode version

Theorem limcimo 14844
Description: Conditions which ensure there is at most one limit value of 
F at  B. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f  |-  ( ph  ->  F : A --> CC )
limcflf.a  |-  ( ph  ->  A  C_  CC )
limcimo.b  |-  ( ph  ->  B  e.  CC )
limcimo.bc  |-  ( ph  ->  B  e.  C )
limcimo.bs  |-  ( ph  ->  B  e.  S )
limcimo.c  |-  ( ph  ->  C  e.  ( Kt  S ) )
limcimo.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
limcimo.ca  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
limcflfcntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
limcimo  |-  ( ph  ->  E* x  x  e.  ( F lim CC  B
) )
Distinct variable groups:    x, B    B, q    C, q    x, F    ph, x
Allowed substitution hints:    ph( q)    A( x, q)    C( x)    S( x, q)    F( q)    K( x, q)

Proof of Theorem limcimo
Dummy variables  e  z  f  g  w  d  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4034 . . . . . . . . . 10  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( ( abs `  ( ( F `
 z )  -  x ) )  < 
e  <->  ( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
21imbi2d 230 . . . . . . . . 9  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  e )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )
32rexralbidv 2520 . . . . . . . 8  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e )  <->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )
4 limcflf.f . . . . . . . . . . . . 13  |-  ( ph  ->  F : A --> CC )
5 limcflf.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  CC )
6 limcimo.b . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  CC )
74, 5, 6ellimc3ap 14840 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( F lim CC  B )  <-> 
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e ) ) ) )
87biimpa 296 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( F lim CC  B ) )  ->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  e ) ) )
98adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  e
) ) )
109simprd 114 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  e ) )
1110adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e ) )
129simpld 112 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  e.  CC )
1312adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  x  e.  CC )
144, 5, 6ellimc3ap 14840 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( y  e.  ( F lim CC  B )  <-> 
( y  e.  CC  /\ 
A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f ) ) ) )
1514biimpa 296 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( F lim CC  B ) )  ->  ( y  e.  CC  /\  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  f ) ) )
1615adantrl 478 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
y  e.  CC  /\  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B
) )  <  g
)  ->  ( abs `  ( ( F `  w )  -  y
) )  <  f
) ) )
1716simpld 112 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  y  e.  CC )
1817adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  y  e.  CC )
1913, 18subcld 8332 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( x  -  y )  e.  CC )
20 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  x #  y )
2113, 18, 20subap0d 8665 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( x  -  y ) #  0 )
2219, 21absrpclapd 11335 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  e.  RR+ )
2322rphalfcld 9778 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( ( abs `  ( x  -  y
) )  /  2
)  e.  RR+ )
243, 11, 23rspcdva 2870 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
25 breq2 4034 . . . . . . . . . . . 12  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( ( abs `  ( ( F `
 w )  -  y ) )  < 
f  <->  ( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
2625imbi2d 230 . . . . . . . . . . 11  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  f )  <-> 
( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )
2726rexralbidv 2520 . . . . . . . . . 10  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f )  <->  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B
) )  <  g
)  ->  ( abs `  ( ( F `  w )  -  y
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )
2816simprd 114 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  f ) )
2928adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f ) )
3027, 29, 23rspcdva 2870 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
3130adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  ( d  e.  RR+  /\  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )  ->  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
324ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  F : A --> CC )
335ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A  C_  CC )
346ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  CC )
35 limcimo.bc . . . . . . . . . 10  |-  ( ph  ->  B  e.  C )
3635ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  C )
37 limcimo.bs . . . . . . . . . 10  |-  ( ph  ->  B  e.  S )
3837ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  S )
39 limcimo.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( Kt  S ) )
4039ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  C  e.  ( Kt  S ) )
41 limcimo.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  { RR ,  CC } )
4241ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  S  e.  { RR ,  CC } )
43 limcimo.ca . . . . . . . . . 10  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
4443ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  { q  e.  C  |  q #  B }  C_  A
)
45 limcflfcntop.k . . . . . . . . 9  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
46 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  d  e.  RR+ )
47 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  e.  ( F lim CC  B
) )
4847ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  x  e.  ( F lim CC  B
) )
49 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  y  e.  ( F lim CC  B
) )
5049ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  y  e.  ( F lim CC  B
) )
51 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
52 simprl 529 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  g  e.  RR+ )
53 simprr 531 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
5432, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 53limcimolemlt 14843 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  ( abs `  ( x  -  y ) )  < 
( abs `  (
x  -  y ) ) )
5531, 54rexlimddv 2616 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  ( d  e.  RR+  /\  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )  -> 
( abs `  (
x  -  y ) )  <  ( abs `  ( x  -  y
) ) )
5624, 55rexlimddv 2616 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  <  ( abs `  ( x  -  y
) ) )
5722rpred 9765 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  e.  RR )
5857ltnrd 8133 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  -.  ( abs `  ( x  -  y
) )  <  ( abs `  ( x  -  y ) ) )
5956, 58pm2.65da 662 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  -.  x #  y )
60 apti 8643 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  y  <->  -.  x #  y )
)
6112, 17, 60syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
x  =  y  <->  -.  x #  y ) )
6259, 61mpbird 167 . . . 4  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  =  y )
6362ex 115 . . 3  |-  ( ph  ->  ( ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
6463alrimivv 1886 . 2  |-  ( ph  ->  A. x A. y
( ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
65 eleq1w 2254 . . 3  |-  ( x  =  y  ->  (
x  e.  ( F lim
CC  B )  <->  y  e.  ( F lim CC  B ) ) )
6665mo4 2103 . 2  |-  ( E* x  x  e.  ( F lim CC  B )  <->  A. x A. y ( ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
6764, 66sylibr 134 1  |-  ( ph  ->  E* x  x  e.  ( F lim CC  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E*wmo 2043    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476    C_ wss 3154   {cpr 3620   class class class wbr 4030    o. ccom 4664   -->wf 5251   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873    < clt 8056    - cmin 8192   # cap 8602    / cdiv 8693   2c2 9035   RR+crp 9722   abscabs 11144   ↾t crest 12853   MetOpencmopn 14040   lim CC climc 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-pm 6707  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-limced 14835
This theorem is referenced by:  dvfgg  14867
  Copyright terms: Public domain W3C validator