ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimo Unicode version

Theorem limcimo 14901
Description: Conditions which ensure there is at most one limit value of 
F at  B. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f  |-  ( ph  ->  F : A --> CC )
limcflf.a  |-  ( ph  ->  A  C_  CC )
limcimo.b  |-  ( ph  ->  B  e.  CC )
limcimo.bc  |-  ( ph  ->  B  e.  C )
limcimo.bs  |-  ( ph  ->  B  e.  S )
limcimo.c  |-  ( ph  ->  C  e.  ( Kt  S ) )
limcimo.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
limcimo.ca  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
limcflfcntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
limcimo  |-  ( ph  ->  E* x  x  e.  ( F lim CC  B
) )
Distinct variable groups:    x, B    B, q    C, q    x, F    ph, x
Allowed substitution hints:    ph( q)    A( x, q)    C( x)    S( x, q)    F( q)    K( x, q)

Proof of Theorem limcimo
Dummy variables  e  z  f  g  w  d  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4037 . . . . . . . . . 10  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( ( abs `  ( ( F `
 z )  -  x ) )  < 
e  <->  ( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
21imbi2d 230 . . . . . . . . 9  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  e )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )
32rexralbidv 2523 . . . . . . . 8  |-  ( e  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e )  <->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )
4 limcflf.f . . . . . . . . . . . . 13  |-  ( ph  ->  F : A --> CC )
5 limcflf.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  CC )
6 limcimo.b . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  CC )
74, 5, 6ellimc3ap 14897 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( F lim CC  B )  <-> 
( x  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e ) ) ) )
87biimpa 296 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( F lim CC  B ) )  ->  ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  e ) ) )
98adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  e
) ) )
109simprd 114 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  x ) )  <  e ) )
1110adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
e ) )
129simpld 112 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  e.  CC )
1312adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  x  e.  CC )
144, 5, 6ellimc3ap 14897 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( y  e.  ( F lim CC  B )  <-> 
( y  e.  CC  /\ 
A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f ) ) ) )
1514biimpa 296 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( F lim CC  B ) )  ->  ( y  e.  CC  /\  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  f ) ) )
1615adantrl 478 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
y  e.  CC  /\  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B
) )  <  g
)  ->  ( abs `  ( ( F `  w )  -  y
) )  <  f
) ) )
1716simpld 112 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  y  e.  CC )
1817adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  y  e.  CC )
1913, 18subcld 8337 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( x  -  y )  e.  CC )
20 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  x #  y )
2113, 18, 20subap0d 8671 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( x  -  y ) #  0 )
2219, 21absrpclapd 11353 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  e.  RR+ )
2322rphalfcld 9784 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( ( abs `  ( x  -  y
) )  /  2
)  e.  RR+ )
243, 11, 23rspcdva 2873 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
25 breq2 4037 . . . . . . . . . . . 12  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( ( abs `  ( ( F `
 w )  -  y ) )  < 
f  <->  ( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
2625imbi2d 230 . . . . . . . . . . 11  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  f )  <-> 
( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )
2726rexralbidv 2523 . . . . . . . . . 10  |-  ( f  =  ( ( abs `  ( x  -  y
) )  /  2
)  ->  ( E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f )  <->  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B
) )  <  g
)  ->  ( abs `  ( ( F `  w )  -  y
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )
2816simprd 114 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  g )  ->  ( abs `  (
( F `  w
)  -  y ) )  <  f ) )
2928adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  A. f  e.  RR+  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
f ) )
3027, 29, 23rspcdva 2873 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  E. g  e.  RR+  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) )
3130adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  ( d  e.  RR+  /\  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )  ->  E. g  e.  RR+  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
324ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  F : A --> CC )
335ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A  C_  CC )
346ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  CC )
35 limcimo.bc . . . . . . . . . 10  |-  ( ph  ->  B  e.  C )
3635ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  C )
37 limcimo.bs . . . . . . . . . 10  |-  ( ph  ->  B  e.  S )
3837ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  B  e.  S )
39 limcimo.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( Kt  S ) )
4039ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  C  e.  ( Kt  S ) )
41 limcimo.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  { RR ,  CC } )
4241ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  S  e.  { RR ,  CC } )
43 limcimo.ca . . . . . . . . . 10  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
4443ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  { q  e.  C  |  q #  B }  C_  A
)
45 limcflfcntop.k . . . . . . . . 9  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
46 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  d  e.  RR+ )
47 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  e.  ( F lim CC  B
) )
4847ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  x  e.  ( F lim CC  B
) )
49 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  y  e.  ( F lim CC  B
) )
5049ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  y  e.  ( F lim CC  B
) )
51 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  x ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
52 simprl 529 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  g  e.  RR+ )
53 simprr 531 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
g )  ->  ( abs `  ( ( F `
 w )  -  y ) )  < 
( ( abs `  (
x  -  y ) )  /  2 ) ) )
5432, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 53limcimolemlt 14900 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  (
d  e.  RR+  /\  A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  x ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  /\  (
g  e.  RR+  /\  A. w  e.  A  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  g )  -> 
( abs `  (
( F `  w
)  -  y ) )  <  ( ( abs `  ( x  -  y ) )  /  2 ) ) ) )  ->  ( abs `  ( x  -  y ) )  < 
( abs `  (
x  -  y ) ) )
5531, 54rexlimddv 2619 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  /\  ( d  e.  RR+  /\  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  x
) )  <  (
( abs `  (
x  -  y ) )  /  2 ) ) ) )  -> 
( abs `  (
x  -  y ) )  <  ( abs `  ( x  -  y
) ) )
5624, 55rexlimddv 2619 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  <  ( abs `  ( x  -  y
) ) )
5722rpred 9771 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  ( abs `  (
x  -  y ) )  e.  RR )
5857ltnrd 8138 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( F lim
CC  B )  /\  y  e.  ( F lim CC  B ) ) )  /\  x #  y )  ->  -.  ( abs `  ( x  -  y
) )  <  ( abs `  ( x  -  y ) ) )
5956, 58pm2.65da 662 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  -.  x #  y )
60 apti 8649 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  y  <->  -.  x #  y )
)
6112, 17, 60syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  (
x  =  y  <->  -.  x #  y ) )
6259, 61mpbird 167 . . . 4  |-  ( (
ph  /\  ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) ) )  ->  x  =  y )
6362ex 115 . . 3  |-  ( ph  ->  ( ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
6463alrimivv 1889 . 2  |-  ( ph  ->  A. x A. y
( ( x  e.  ( F lim CC  B
)  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
65 eleq1w 2257 . . 3  |-  ( x  =  y  ->  (
x  e.  ( F lim
CC  B )  <->  y  e.  ( F lim CC  B ) ) )
6665mo4 2106 . 2  |-  ( E* x  x  e.  ( F lim CC  B )  <->  A. x A. y ( ( x  e.  ( F lim CC  B )  /\  y  e.  ( F lim CC  B ) )  ->  x  =  y ) )
6764, 66sylibr 134 1  |-  ( ph  ->  E* x  x  e.  ( F lim CC  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E*wmo 2046    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479    C_ wss 3157   {cpr 3623   class class class wbr 4033    o. ccom 4667   -->wf 5254   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878    < clt 8061    - cmin 8197   # cap 8608    / cdiv 8699   2c2 9041   RR+crp 9728   abscabs 11162   ↾t crest 12910   MetOpencmopn 14097   lim CC climc 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-limced 14892
This theorem is referenced by:  dvfgg  14924
  Copyright terms: Public domain W3C validator