ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq2 Unicode version

Theorem seqeq2 10673
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq2  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )

Proof of Theorem seqeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1021 . . . . . . 7  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  .+  =  Q )
21oveqd 6018 . . . . . 6  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  =  ( y Q ( F `  ( x  +  1 ) ) ) )
32opeq2d 3864 . . . . 5  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )
43mpoeq3dva 6068 . . . 4  |-  (  .+  =  Q  ->  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )
)
5 freceq1 6538 . . . 4  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
64, 5syl 14 . . 3  |-  (  .+  =  Q  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
76rneqd 4953 . 2  |-  (  .+  =  Q  ->  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
8 df-seqfrec 10670 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
9 df-seqfrec 10670 . 2  |-  seq M
( Q ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
107, 8, 93eqtr4g 2287 1  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669   ran crn 4720   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  freccfrec 6536   1c1 8000    + caddc 8002   ZZ>=cuz 9722    seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-frec 6537  df-seqfrec 10670
This theorem is referenced by:  seqeq2d  10676  resqrex  11537  nninfdc  13024
  Copyright terms: Public domain W3C validator