Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqeq2 | Unicode version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 987 | . . . . . . 7 | |
2 | 1 | oveqd 5859 | . . . . . 6 |
3 | 2 | opeq2d 3765 | . . . . 5 |
4 | 3 | mpoeq3dva 5906 | . . . 4 |
5 | freceq1 6360 | . . . 4 frec frec | |
6 | 4, 5 | syl 14 | . . 3 frec frec |
7 | 6 | rneqd 4833 | . 2 frec frec |
8 | df-seqfrec 10381 | . 2 frec | |
9 | df-seqfrec 10381 | . 2 frec | |
10 | 7, 8, 9 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 wceq 1343 wcel 2136 cvv 2726 cop 3579 crn 4605 cfv 5188 (class class class)co 5842 cmpo 5844 freccfrec 6358 c1 7754 caddc 7756 cuz 9466 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-seqfrec 10381 |
This theorem is referenced by: seqeq2d 10387 resqrex 10968 nninfdc 12386 |
Copyright terms: Public domain | W3C validator |