ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq2 Unicode version

Theorem seqeq2 10374
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq2  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )

Proof of Theorem seqeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 986 . . . . . . 7  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  .+  =  Q )
21oveqd 5853 . . . . . 6  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  =  ( y Q ( F `  ( x  +  1 ) ) ) )
32opeq2d 3759 . . . . 5  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )
43mpoeq3dva 5897 . . . 4  |-  (  .+  =  Q  ->  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )
)
5 freceq1 6351 . . . 4  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
64, 5syl 14 . . 3  |-  (  .+  =  Q  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
76rneqd 4827 . 2  |-  (  .+  =  Q  ->  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
8 df-seqfrec 10371 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
9 df-seqfrec 10371 . 2  |-  seq M
( Q ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
107, 8, 93eqtr4g 2222 1  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 967    = wceq 1342    e. wcel 2135   _Vcvv 2721   <.cop 3573   ran crn 4599   ` cfv 5182  (class class class)co 5836    e. cmpo 5838  freccfrec 6349   1c1 7745    + caddc 7747   ZZ>=cuz 9457    seqcseq 10370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-cnv 4606  df-dm 4608  df-rn 4609  df-res 4610  df-iota 5147  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-recs 6264  df-frec 6350  df-seqfrec 10371
This theorem is referenced by:  seqeq2d  10377  resqrex  10954  nninfdc  12325
  Copyright terms: Public domain W3C validator