ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq2 Unicode version

Theorem seqeq2 10560
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq2  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )

Proof of Theorem seqeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . . . 7  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  .+  =  Q )
21oveqd 5942 . . . . . 6  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  =  ( y Q ( F `  ( x  +  1 ) ) ) )
32opeq2d 3816 . . . . 5  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )
43mpoeq3dva 5990 . . . 4  |-  (  .+  =  Q  ->  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )
)
5 freceq1 6459 . . . 4  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
64, 5syl 14 . . 3  |-  (  .+  =  Q  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
76rneqd 4896 . 2  |-  (  .+  =  Q  ->  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
8 df-seqfrec 10557 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
9 df-seqfrec 10557 . 2  |-  seq M
( Q ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
107, 8, 93eqtr4g 2254 1  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763   <.cop 3626   ran crn 4665   ` cfv 5259  (class class class)co 5925    e. cmpo 5927  freccfrec 6457   1c1 7897    + caddc 7899   ZZ>=cuz 9618    seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-seqfrec 10557
This theorem is referenced by:  seqeq2d  10563  resqrex  11208  nninfdc  12695
  Copyright terms: Public domain W3C validator