Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqeq2 | Unicode version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . . . . 7 | |
2 | 1 | oveqd 5882 | . . . . . 6 |
3 | 2 | opeq2d 3781 | . . . . 5 |
4 | 3 | mpoeq3dva 5929 | . . . 4 |
5 | freceq1 6383 | . . . 4 frec frec | |
6 | 4, 5 | syl 14 | . . 3 frec frec |
7 | 6 | rneqd 4849 | . 2 frec frec |
8 | df-seqfrec 10416 | . 2 frec | |
9 | df-seqfrec 10416 | . 2 frec | |
10 | 7, 8, 9 | 3eqtr4g 2233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 978 wceq 1353 wcel 2146 cvv 2735 cop 3592 crn 4621 cfv 5208 (class class class)co 5865 cmpo 5867 freccfrec 6381 c1 7787 caddc 7789 cuz 9501 cseq 10415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-recs 6296 df-frec 6382 df-seqfrec 10416 |
This theorem is referenced by: seqeq2d 10422 resqrex 11003 nninfdc 12421 |
Copyright terms: Public domain | W3C validator |