ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq2 Unicode version

Theorem seqeq2 10596
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq2  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )

Proof of Theorem seqeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . . . 7  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  .+  =  Q )
21oveqd 5961 . . . . . 6  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  =  ( y Q ( F `  ( x  +  1 ) ) ) )
32opeq2d 3826 . . . . 5  |-  ( ( 
.+  =  Q  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )
43mpoeq3dva 6009 . . . 4  |-  (  .+  =  Q  ->  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )
)
5 freceq1 6478 . . . 4  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y Q ( F `  (
x  +  1 ) ) ) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
64, 5syl 14 . . 3  |-  (  .+  =  Q  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
76rneqd 4907 . 2  |-  (  .+  =  Q  ->  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
8 df-seqfrec 10593 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
9 df-seqfrec 10593 . 2  |-  seq M
( Q ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y Q ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
107, 8, 93eqtr4g 2263 1  |-  (  .+  =  Q  ->  seq M
(  .+  ,  F
)  =  seq M
( Q ,  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772   <.cop 3636   ran crn 4676   ` cfv 5271  (class class class)co 5944    e. cmpo 5946  freccfrec 6476   1c1 7926    + caddc 7928   ZZ>=cuz 9648    seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-seqfrec 10593
This theorem is referenced by:  seqeq2d  10599  resqrex  11337  nninfdc  12824
  Copyright terms: Public domain W3C validator