ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulex Unicode version

Theorem mulex 9677
Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
mulex  |-  x.  e.  _V

Proof of Theorem mulex
StepHypRef Expression
1 ax-mulf 7959 . 2  |-  x.  :
( CC  X.  CC )
--> CC
2 cnex 7960 . . 3  |-  CC  e.  _V
32, 2xpex 4756 . 2  |-  ( CC 
X.  CC )  e. 
_V
4 fex2 5400 . 2  |-  ( (  x.  : ( CC 
X.  CC ) --> CC 
/\  ( CC  X.  CC )  e.  _V  /\  CC  e.  _V )  ->  x.  e.  _V )
51, 3, 2, 4mp3an 1348 1  |-  x.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   _Vcvv 2752    X. cxp 4639   -->wf 5228   CCcc 7834    x. cmul 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7927  ax-mulf 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-rel 4648  df-cnv 4649  df-dm 4651  df-rn 4652  df-fun 5234  df-fn 5235  df-f 5236
This theorem is referenced by:  cnfldstr  13859  cnfldmul  13863
  Copyright terms: Public domain W3C validator