ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulex Unicode version

Theorem mulex 9756
Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
mulex  |-  x.  e.  _V

Proof of Theorem mulex
StepHypRef Expression
1 ax-mulf 8030 . 2  |-  x.  :
( CC  X.  CC )
--> CC
2 cnex 8031 . . 3  |-  CC  e.  _V
32, 2xpex 4788 . 2  |-  ( CC 
X.  CC )  e. 
_V
4 fex2 5438 . 2  |-  ( (  x.  : ( CC 
X.  CC ) --> CC 
/\  ( CC  X.  CC )  e.  _V  /\  CC  e.  _V )  ->  x.  e.  _V )
51, 3, 2, 4mp3an 1349 1  |-  x.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2175   _Vcvv 2771    X. cxp 4671   -->wf 5264   CCcc 7905    x. cmul 7912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-mulf 8030
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-rel 4680  df-cnv 4681  df-dm 4683  df-rn 4684  df-fun 5270  df-fn 5271  df-f 5272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator