| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulex | GIF version | ||
| Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| mulex | ⊢ · ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulf 8090 | . 2 ⊢ · :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 8091 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 4811 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 5468 | . 2 ⊢ (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1352 | 1 ⊢ · ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 Vcvv 2779 × cxp 4694 ⟶wf 5290 ℂcc 7965 · cmul 7972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-mulf 8090 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-cnv 4704 df-dm 4706 df-rn 4707 df-fun 5296 df-fn 5297 df-f 5298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |