![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulex | GIF version |
Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
mulex | ⊢ · ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulf 7948 | . 2 ⊢ · :(ℂ × ℂ)⟶ℂ | |
2 | cnex 7949 | . . 3 ⊢ ℂ ∈ V | |
3 | 2, 2 | xpex 4753 | . 2 ⊢ (ℂ × ℂ) ∈ V |
4 | fex2 5396 | . 2 ⊢ (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V) | |
5 | 1, 3, 2, 4 | mp3an 1347 | 1 ⊢ · ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2158 Vcvv 2749 × cxp 4636 ⟶wf 5224 ℂcc 7823 · cmul 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7916 ax-mulf 7948 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-xp 4644 df-rel 4645 df-cnv 4646 df-dm 4648 df-rn 4649 df-fun 5230 df-fn 5231 df-f 5232 |
This theorem is referenced by: cnfldstr 13739 cnfldmul 13743 |
Copyright terms: Public domain | W3C validator |