ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulex GIF version

Theorem mulex 9781
Description: The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
mulex · ∈ V

Proof of Theorem mulex
StepHypRef Expression
1 ax-mulf 8055 . 2 · :(ℂ × ℂ)⟶ℂ
2 cnex 8056 . . 3 ℂ ∈ V
32, 2xpex 4794 . 2 (ℂ × ℂ) ∈ V
4 fex2 5450 . 2 (( · :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → · ∈ V)
51, 3, 2, 4mp3an 1350 1 · ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773   × cxp 4677  wf 5272  cc 7930   · cmul 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687  df-dm 4689  df-rn 4690  df-fun 5278  df-fn 5279  df-f 5280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator