ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fex2 Unicode version

Theorem fex2 5492
Description: A function with bounded domain and codomain is a set. This version is proven without the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fex2  |-  ( ( F : A --> B  /\  A  e.  V  /\  B  e.  W )  ->  F  e.  _V )

Proof of Theorem fex2
StepHypRef Expression
1 xpexg 4833 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
213adant1 1039 . 2  |-  ( ( F : A --> B  /\  A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
3 fssxp 5491 . . 3  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
433ad2ant1 1042 . 2  |-  ( ( F : A --> B  /\  A  e.  V  /\  B  e.  W )  ->  F  C_  ( A  X.  B ) )
52, 4ssexd 4224 1  |-  ( ( F : A --> B  /\  A  e.  V  /\  B  e.  W )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    e. wcel 2200   _Vcvv 2799    C_ wss 3197    X. cxp 4717   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  elmapg  6808  f1oen2g  6906  f1dom2g  6907  dom3d  6925  mapxpen  7009  addex  9847  mulex  9848  climrecvg1n  11859  cnpfval  14869  txcn  14949  blfvalps  15059
  Copyright terms: Public domain W3C validator