ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr1g Unicode version

Theorem fvpr1g 5735
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr1g  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  C )

Proof of Theorem fvpr1g
StepHypRef Expression
1 df-pr 3611 . . . . 5  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21fveq1i 5528 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 A )  =  ( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )
3 necom 2441 . . . . 5  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvunsng 5723 . . . . 5  |-  ( ( A  e.  V  /\  B  =/=  A )  -> 
( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
53, 4sylan2b 287 . . . 4  |-  ( ( A  e.  V  /\  A  =/=  B )  -> 
( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
62, 5eqtrid 2232 . . 3  |-  ( ( A  e.  V  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  ( {
<. A ,  C >. } `
 A ) )
763adant2 1017 . 2  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  ( {
<. A ,  C >. } `
 A ) )
8 fvsng 5725 . . 3  |-  ( ( A  e.  V  /\  C  e.  W )  ->  ( { <. A ,  C >. } `  A
)  =  C )
983adant3 1018 . 2  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. } `  A
)  =  C )
107, 9eqtrd 2220 1  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2158    =/= wne 2357    u. cun 3139   {csn 3604   {cpr 3605   <.cop 3607   ` cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-res 4650  df-iota 5190  df-fun 5230  df-fv 5236
This theorem is referenced by:  fvtp1g  5737  fvpr0o  12779
  Copyright terms: Public domain W3C validator