ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr1g Unicode version

Theorem fvpr1g 5542
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr1g  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  C )

Proof of Theorem fvpr1g
StepHypRef Expression
1 df-pr 3473 . . . . 5  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21fveq1i 5341 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 A )  =  ( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )
3 necom 2346 . . . . 5  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvunsng 5530 . . . . 5  |-  ( ( A  e.  V  /\  B  =/=  A )  -> 
( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
53, 4sylan2b 282 . . . 4  |-  ( ( A  e.  V  /\  A  =/=  B )  -> 
( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
62, 5syl5eq 2139 . . 3  |-  ( ( A  e.  V  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  ( {
<. A ,  C >. } `
 A ) )
763adant2 965 . 2  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  ( {
<. A ,  C >. } `
 A ) )
8 fvsng 5532 . . 3  |-  ( ( A  e.  V  /\  C  e.  W )  ->  ( { <. A ,  C >. } `  A
)  =  C )
983adant3 966 . 2  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. } `  A
)  =  C )
107, 9eqtrd 2127 1  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 927    = wceq 1296    e. wcel 1445    =/= wne 2262    u. cun 3011   {csn 3466   {cpr 3467   <.cop 3469   ` cfv 5049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-res 4479  df-iota 5014  df-fun 5051  df-fv 5057
This theorem is referenced by:  fvtp1g  5544
  Copyright terms: Public domain W3C validator