ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr1g Unicode version

Theorem fvpr1g 5790
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr1g  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  C )

Proof of Theorem fvpr1g
StepHypRef Expression
1 df-pr 3640 . . . . 5  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21fveq1i 5577 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 A )  =  ( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )
3 necom 2460 . . . . 5  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvunsng 5778 . . . . 5  |-  ( ( A  e.  V  /\  B  =/=  A )  -> 
( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
53, 4sylan2b 287 . . . 4  |-  ( ( A  e.  V  /\  A  =/=  B )  -> 
( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
62, 5eqtrid 2250 . . 3  |-  ( ( A  e.  V  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  ( {
<. A ,  C >. } `
 A ) )
763adant2 1019 . 2  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  ( {
<. A ,  C >. } `
 A ) )
8 fvsng 5780 . . 3  |-  ( ( A  e.  V  /\  C  e.  W )  ->  ( { <. A ,  C >. } `  A
)  =  C )
983adant3 1020 . 2  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. } `  A
)  =  C )
107, 9eqtrd 2238 1  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376    u. cun 3164   {csn 3633   {cpr 3634   <.cop 3636   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279
This theorem is referenced by:  fvtp1g  5792  fvpr0o  13173
  Copyright terms: Public domain W3C validator