ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0lt2 Unicode version

Theorem nn0lt2 9245
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
nn0lt2  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =  0  \/  N  =  1 ) )

Proof of Theorem nn0lt2
StepHypRef Expression
1 olc 701 . . 3  |-  ( N  =  1  ->  ( N  =  0  \/  N  =  1 ) )
21a1i 9 . 2  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =  1  ->  ( N  =  0  \/  N  =  1 ) ) )
3 nn0z 9187 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
4 2z 9195 . . . . . 6  |-  2  e.  ZZ
5 zltlem1 9224 . . . . . 6  |-  ( ( N  e.  ZZ  /\  2  e.  ZZ )  ->  ( N  <  2  <->  N  <_  ( 2  -  1 ) ) )
63, 4, 5sylancl 410 . . . . 5  |-  ( N  e.  NN0  ->  ( N  <  2  <->  N  <_  ( 2  -  1 ) ) )
7 2m1e1 8951 . . . . . 6  |-  ( 2  -  1 )  =  1
87breq2i 3973 . . . . 5  |-  ( N  <_  ( 2  -  1 )  <->  N  <_  1 )
96, 8bitrdi 195 . . . 4  |-  ( N  e.  NN0  ->  ( N  <  2  <->  N  <_  1 ) )
10 necom 2411 . . . . 5  |-  ( N  =/=  1  <->  1  =/=  N )
11 1z 9193 . . . . . . . 8  |-  1  e.  ZZ
12 zltlen 9242 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  ->  ( N  <  1  <->  ( N  <_  1  /\  1  =/=  N ) ) )
133, 11, 12sylancl 410 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  <  1  <->  ( N  <_  1  /\  1  =/= 
N ) ) )
14 nn0lt10b 9244 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  <  1  <->  N  = 
0 ) )
1514biimpa 294 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  N  <  1 )  ->  N  =  0 )
1615orcd 723 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  N  <  1 )  -> 
( N  =  0  \/  N  =  1 ) )
1716ex 114 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  <  1  ->  ( N  =  0  \/  N  =  1 ) ) )
1813, 17sylbird 169 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  <_  1  /\  1  =/=  N )  -> 
( N  =  0  \/  N  =  1 ) ) )
1918expd 256 . . . . 5  |-  ( N  e.  NN0  ->  ( N  <_  1  ->  (
1  =/=  N  -> 
( N  =  0  \/  N  =  1 ) ) ) )
2010, 19syl7bi 164 . . . 4  |-  ( N  e.  NN0  ->  ( N  <_  1  ->  ( N  =/=  1  ->  ( N  =  0  \/  N  =  1 ) ) ) )
219, 20sylbid 149 . . 3  |-  ( N  e.  NN0  ->  ( N  <  2  ->  ( N  =/=  1  ->  ( N  =  0  \/  N  =  1 ) ) ) )
2221imp 123 . 2  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =/=  1  ->  ( N  =  0  \/  N  =  1 ) ) )
23 zdceq 9239 . . . . 5  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  -> DECID  N  =  1 )
243, 11, 23sylancl 410 . . . 4  |-  ( N  e.  NN0  -> DECID  N  =  1
)
2524adantr 274 . . 3  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> DECID  N  =  1 )
26 dcne 2338 . . 3  |-  (DECID  N  =  1  <->  ( N  =  1  \/  N  =/=  1 ) )
2725, 26sylib 121 . 2  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =  1  \/  N  =/=  1
) )
282, 22, 27mpjaod 708 1  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =  0  \/  N  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327   class class class wbr 3965  (class class class)co 5824   0cc0 7732   1c1 7733    < clt 7912    <_ cle 7913    - cmin 8046   2c2 8884   NN0cn0 9090   ZZcz 9167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-iota 5135  df-fun 5172  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-inn 8834  df-2 8892  df-n0 9091  df-z 9168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator