ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqeqceilz Unicode version

Theorem flqeqceilz 10122
Description: A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
flqeqceilz  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( |_ `  A )  =  ( `  A ) ) )

Proof of Theorem flqeqceilz
StepHypRef Expression
1 flid 10088 . . 3  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
2 ceilid 10119 . . 3  |-  ( A  e.  ZZ  ->  ( `  A )  =  A )
31, 2eqtr4d 2176 . 2  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  ( `  A )
)
4 flqcl 10077 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
5 zq 9445 . . . . . 6  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
64, 5syl 14 . . . . 5  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  QQ )
7 qdceq 10055 . . . . 5  |-  ( ( ( |_ `  A
)  e.  QQ  /\  A  e.  QQ )  -> DECID  ( |_ `  A )  =  A )
86, 7mpancom 419 . . . 4  |-  ( A  e.  QQ  -> DECID  ( |_ `  A
)  =  A )
9 exmiddc 822 . . . 4  |-  (DECID  ( |_
`  A )  =  A  ->  ( ( |_ `  A )  =  A  \/  -.  ( |_ `  A )  =  A ) )
108, 9syl 14 . . 3  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  A  \/  -.  ( |_ `  A
)  =  A ) )
11 eqeq1 2147 . . . . . . 7  |-  ( ( |_ `  A )  =  A  ->  (
( |_ `  A
)  =  ( `  A
)  <->  A  =  ( `  A ) ) )
1211adantr 274 . . . . . 6  |-  ( ( ( |_ `  A
)  =  A  /\  A  e.  QQ )  ->  ( ( |_ `  A )  =  ( `  A )  <->  A  =  ( `  A ) ) )
13 ceilqidz 10120 . . . . . . . . 9  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( `  A
)  =  A ) )
14 eqcom 2142 . . . . . . . . 9  |-  ( ( `  A )  =  A  <-> 
A  =  ( `  A
) )
1513, 14syl6bb 195 . . . . . . . 8  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A  =  ( `  A ) ) )
1615biimprd 157 . . . . . . 7  |-  ( A  e.  QQ  ->  ( A  =  ( `  A
)  ->  A  e.  ZZ ) )
1716adantl 275 . . . . . 6  |-  ( ( ( |_ `  A
)  =  A  /\  A  e.  QQ )  ->  ( A  =  ( `  A )  ->  A  e.  ZZ ) )
1812, 17sylbid 149 . . . . 5  |-  ( ( ( |_ `  A
)  =  A  /\  A  e.  QQ )  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) )
1918ex 114 . . . 4  |-  ( ( |_ `  A )  =  A  ->  ( A  e.  QQ  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) )
20 flqle 10082 . . . . 5  |-  ( A  e.  QQ  ->  ( |_ `  A )  <_  A )
21 df-ne 2310 . . . . . 6  |-  ( ( |_ `  A )  =/=  A  <->  -.  ( |_ `  A )  =  A )
22 necom 2393 . . . . . . 7  |-  ( ( |_ `  A )  =/=  A  <->  A  =/=  ( |_ `  A ) )
23 qltlen 9459 . . . . . . . . . . 11  |-  ( ( ( |_ `  A
)  e.  QQ  /\  A  e.  QQ )  ->  ( ( |_ `  A )  <  A  <->  ( ( |_ `  A
)  <_  A  /\  A  =/=  ( |_ `  A ) ) ) )
246, 23mpancom 419 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  <  A  <->  ( ( |_ `  A )  <_  A  /\  A  =/=  ( |_ `  A ) ) ) )
25 breq1 3940 . . . . . . . . . . . . . 14  |-  ( ( |_ `  A )  =  ( `  A
)  ->  ( ( |_ `  A )  < 
A  <->  ( `  A )  <  A ) )
2625adantl 275 . . . . . . . . . . . . 13  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  =  ( `  A
) )  ->  (
( |_ `  A
)  <  A  <->  ( `  A
)  <  A )
)
27 ceilqge 10114 . . . . . . . . . . . . . . 15  |-  ( A  e.  QQ  ->  A  <_  ( `  A )
)
28 qre 9444 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  QQ  ->  A  e.  RR )
29 ceilqcl 10112 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  QQ  ->  ( `  A )  e.  ZZ )
3029zred 9197 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  QQ  ->  ( `  A )  e.  RR )
3128, 30lenltd 7904 . . . . . . . . . . . . . . . 16  |-  ( A  e.  QQ  ->  ( A  <_  ( `  A )  <->  -.  ( `  A )  <  A ) )
32 pm2.21 607 . . . . . . . . . . . . . . . 16  |-  ( -.  ( `  A )  <  A  ->  ( ( `  A )  <  A  ->  A  e.  ZZ ) )
3331, 32syl6bi 162 . . . . . . . . . . . . . . 15  |-  ( A  e.  QQ  ->  ( A  <_  ( `  A )  ->  ( ( `  A
)  <  A  ->  A  e.  ZZ ) ) )
3427, 33mpd 13 . . . . . . . . . . . . . 14  |-  ( A  e.  QQ  ->  (
( `  A )  < 
A  ->  A  e.  ZZ ) )
3534adantr 274 . . . . . . . . . . . . 13  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  =  ( `  A
) )  ->  (
( `  A )  < 
A  ->  A  e.  ZZ ) )
3626, 35sylbid 149 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  =  ( `  A
) )  ->  (
( |_ `  A
)  <  A  ->  A  e.  ZZ ) )
3736ex 114 . . . . . . . . . . 11  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  ( `  A
)  ->  ( ( |_ `  A )  < 
A  ->  A  e.  ZZ ) ) )
3837com23 78 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  <  A  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) )
3924, 38sylbird 169 . . . . . . . . 9  |-  ( A  e.  QQ  ->  (
( ( |_ `  A )  <_  A  /\  A  =/=  ( |_ `  A ) )  ->  ( ( |_
`  A )  =  ( `  A )  ->  A  e.  ZZ ) ) )
4039expd 256 . . . . . . . 8  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  <_  A  ->  ( A  =/=  ( |_
`  A )  -> 
( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) ) )
4140com3r 79 . . . . . . 7  |-  ( A  =/=  ( |_ `  A )  ->  ( A  e.  QQ  ->  ( ( |_ `  A
)  <_  A  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) ) )
4222, 41sylbi 120 . . . . . 6  |-  ( ( |_ `  A )  =/=  A  ->  ( A  e.  QQ  ->  ( ( |_ `  A
)  <_  A  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) ) )
4321, 42sylbir 134 . . . . 5  |-  ( -.  ( |_ `  A
)  =  A  -> 
( A  e.  QQ  ->  ( ( |_ `  A )  <_  A  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) ) )
4420, 43mpdi 43 . . . 4  |-  ( -.  ( |_ `  A
)  =  A  -> 
( A  e.  QQ  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) )
4519, 44jaoi 706 . . 3  |-  ( ( ( |_ `  A
)  =  A  \/  -.  ( |_ `  A
)  =  A )  ->  ( A  e.  QQ  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) )
4610, 45mpcom 36 . 2  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) )
473, 46impbid2 142 1  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( |_ `  A )  =  ( `  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481    =/= wne 2309   class class class wbr 3937   ` cfv 5131    < clt 7824    <_ cle 7825   ZZcz 9078   QQcq 9438   |_cfl 10072  ⌈cceil 10073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074  df-ceil 10075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator