ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqeqceilz Unicode version

Theorem flqeqceilz 10091
Description: A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
flqeqceilz  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( |_ `  A )  =  ( `  A ) ) )

Proof of Theorem flqeqceilz
StepHypRef Expression
1 flid 10057 . . 3  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
2 ceilid 10088 . . 3  |-  ( A  e.  ZZ  ->  ( `  A )  =  A )
31, 2eqtr4d 2175 . 2  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  ( `  A )
)
4 flqcl 10046 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
5 zq 9418 . . . . . 6  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
64, 5syl 14 . . . . 5  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  QQ )
7 qdceq 10024 . . . . 5  |-  ( ( ( |_ `  A
)  e.  QQ  /\  A  e.  QQ )  -> DECID  ( |_ `  A )  =  A )
86, 7mpancom 418 . . . 4  |-  ( A  e.  QQ  -> DECID  ( |_ `  A
)  =  A )
9 exmiddc 821 . . . 4  |-  (DECID  ( |_
`  A )  =  A  ->  ( ( |_ `  A )  =  A  \/  -.  ( |_ `  A )  =  A ) )
108, 9syl 14 . . 3  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  A  \/  -.  ( |_ `  A
)  =  A ) )
11 eqeq1 2146 . . . . . . 7  |-  ( ( |_ `  A )  =  A  ->  (
( |_ `  A
)  =  ( `  A
)  <->  A  =  ( `  A ) ) )
1211adantr 274 . . . . . 6  |-  ( ( ( |_ `  A
)  =  A  /\  A  e.  QQ )  ->  ( ( |_ `  A )  =  ( `  A )  <->  A  =  ( `  A ) ) )
13 ceilqidz 10089 . . . . . . . . 9  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( `  A
)  =  A ) )
14 eqcom 2141 . . . . . . . . 9  |-  ( ( `  A )  =  A  <-> 
A  =  ( `  A
) )
1513, 14syl6bb 195 . . . . . . . 8  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A  =  ( `  A ) ) )
1615biimprd 157 . . . . . . 7  |-  ( A  e.  QQ  ->  ( A  =  ( `  A
)  ->  A  e.  ZZ ) )
1716adantl 275 . . . . . 6  |-  ( ( ( |_ `  A
)  =  A  /\  A  e.  QQ )  ->  ( A  =  ( `  A )  ->  A  e.  ZZ ) )
1812, 17sylbid 149 . . . . 5  |-  ( ( ( |_ `  A
)  =  A  /\  A  e.  QQ )  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) )
1918ex 114 . . . 4  |-  ( ( |_ `  A )  =  A  ->  ( A  e.  QQ  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) )
20 flqle 10051 . . . . 5  |-  ( A  e.  QQ  ->  ( |_ `  A )  <_  A )
21 df-ne 2309 . . . . . 6  |-  ( ( |_ `  A )  =/=  A  <->  -.  ( |_ `  A )  =  A )
22 necom 2392 . . . . . . 7  |-  ( ( |_ `  A )  =/=  A  <->  A  =/=  ( |_ `  A ) )
23 qltlen 9432 . . . . . . . . . . 11  |-  ( ( ( |_ `  A
)  e.  QQ  /\  A  e.  QQ )  ->  ( ( |_ `  A )  <  A  <->  ( ( |_ `  A
)  <_  A  /\  A  =/=  ( |_ `  A ) ) ) )
246, 23mpancom 418 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  <  A  <->  ( ( |_ `  A )  <_  A  /\  A  =/=  ( |_ `  A ) ) ) )
25 breq1 3932 . . . . . . . . . . . . . 14  |-  ( ( |_ `  A )  =  ( `  A
)  ->  ( ( |_ `  A )  < 
A  <->  ( `  A )  <  A ) )
2625adantl 275 . . . . . . . . . . . . 13  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  =  ( `  A
) )  ->  (
( |_ `  A
)  <  A  <->  ( `  A
)  <  A )
)
27 ceilqge 10083 . . . . . . . . . . . . . . 15  |-  ( A  e.  QQ  ->  A  <_  ( `  A )
)
28 qre 9417 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  QQ  ->  A  e.  RR )
29 ceilqcl 10081 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  QQ  ->  ( `  A )  e.  ZZ )
3029zred 9173 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  QQ  ->  ( `  A )  e.  RR )
3128, 30lenltd 7880 . . . . . . . . . . . . . . . 16  |-  ( A  e.  QQ  ->  ( A  <_  ( `  A )  <->  -.  ( `  A )  <  A ) )
32 pm2.21 606 . . . . . . . . . . . . . . . 16  |-  ( -.  ( `  A )  <  A  ->  ( ( `  A )  <  A  ->  A  e.  ZZ ) )
3331, 32syl6bi 162 . . . . . . . . . . . . . . 15  |-  ( A  e.  QQ  ->  ( A  <_  ( `  A )  ->  ( ( `  A
)  <  A  ->  A  e.  ZZ ) ) )
3427, 33mpd 13 . . . . . . . . . . . . . 14  |-  ( A  e.  QQ  ->  (
( `  A )  < 
A  ->  A  e.  ZZ ) )
3534adantr 274 . . . . . . . . . . . . 13  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  =  ( `  A
) )  ->  (
( `  A )  < 
A  ->  A  e.  ZZ ) )
3626, 35sylbid 149 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  =  ( `  A
) )  ->  (
( |_ `  A
)  <  A  ->  A  e.  ZZ ) )
3736ex 114 . . . . . . . . . . 11  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  ( `  A
)  ->  ( ( |_ `  A )  < 
A  ->  A  e.  ZZ ) ) )
3837com23 78 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  <  A  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) )
3924, 38sylbird 169 . . . . . . . . 9  |-  ( A  e.  QQ  ->  (
( ( |_ `  A )  <_  A  /\  A  =/=  ( |_ `  A ) )  ->  ( ( |_
`  A )  =  ( `  A )  ->  A  e.  ZZ ) ) )
4039expd 256 . . . . . . . 8  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  <_  A  ->  ( A  =/=  ( |_
`  A )  -> 
( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) ) )
4140com3r 79 . . . . . . 7  |-  ( A  =/=  ( |_ `  A )  ->  ( A  e.  QQ  ->  ( ( |_ `  A
)  <_  A  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) ) )
4222, 41sylbi 120 . . . . . 6  |-  ( ( |_ `  A )  =/=  A  ->  ( A  e.  QQ  ->  ( ( |_ `  A
)  <_  A  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) ) )
4321, 42sylbir 134 . . . . 5  |-  ( -.  ( |_ `  A
)  =  A  -> 
( A  e.  QQ  ->  ( ( |_ `  A )  <_  A  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) ) )
4420, 43mpdi 43 . . . 4  |-  ( -.  ( |_ `  A
)  =  A  -> 
( A  e.  QQ  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) )
4519, 44jaoi 705 . . 3  |-  ( ( ( |_ `  A
)  =  A  \/  -.  ( |_ `  A
)  =  A )  ->  ( A  e.  QQ  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) )
4610, 45mpcom 36 . 2  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) )
473, 46impbid2 142 1  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( |_ `  A )  =  ( `  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308   class class class wbr 3929   ` cfv 5123    < clt 7800    <_ cle 7801   ZZcz 9054   QQcq 9411   |_cfl 10041  ⌈cceil 10042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412  df-rp 9442  df-fl 10043  df-ceil 10044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator