ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqeqceilz Unicode version

Theorem flqeqceilz 10410
Description: A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
flqeqceilz  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( |_ `  A )  =  ( `  A ) ) )

Proof of Theorem flqeqceilz
StepHypRef Expression
1 flid 10374 . . 3  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
2 ceilid 10407 . . 3  |-  ( A  e.  ZZ  ->  ( `  A )  =  A )
31, 2eqtr4d 2232 . 2  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  ( `  A )
)
4 flqcl 10363 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
5 zq 9700 . . . . . 6  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
64, 5syl 14 . . . . 5  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  QQ )
7 qdceq 10334 . . . . 5  |-  ( ( ( |_ `  A
)  e.  QQ  /\  A  e.  QQ )  -> DECID  ( |_ `  A )  =  A )
86, 7mpancom 422 . . . 4  |-  ( A  e.  QQ  -> DECID  ( |_ `  A
)  =  A )
9 exmiddc 837 . . . 4  |-  (DECID  ( |_
`  A )  =  A  ->  ( ( |_ `  A )  =  A  \/  -.  ( |_ `  A )  =  A ) )
108, 9syl 14 . . 3  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  A  \/  -.  ( |_ `  A
)  =  A ) )
11 eqeq1 2203 . . . . . . 7  |-  ( ( |_ `  A )  =  A  ->  (
( |_ `  A
)  =  ( `  A
)  <->  A  =  ( `  A ) ) )
1211adantr 276 . . . . . 6  |-  ( ( ( |_ `  A
)  =  A  /\  A  e.  QQ )  ->  ( ( |_ `  A )  =  ( `  A )  <->  A  =  ( `  A ) ) )
13 ceilqidz 10408 . . . . . . . . 9  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( `  A
)  =  A ) )
14 eqcom 2198 . . . . . . . . 9  |-  ( ( `  A )  =  A  <-> 
A  =  ( `  A
) )
1513, 14bitrdi 196 . . . . . . . 8  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A  =  ( `  A ) ) )
1615biimprd 158 . . . . . . 7  |-  ( A  e.  QQ  ->  ( A  =  ( `  A
)  ->  A  e.  ZZ ) )
1716adantl 277 . . . . . 6  |-  ( ( ( |_ `  A
)  =  A  /\  A  e.  QQ )  ->  ( A  =  ( `  A )  ->  A  e.  ZZ ) )
1812, 17sylbid 150 . . . . 5  |-  ( ( ( |_ `  A
)  =  A  /\  A  e.  QQ )  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) )
1918ex 115 . . . 4  |-  ( ( |_ `  A )  =  A  ->  ( A  e.  QQ  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) )
20 flqle 10368 . . . . 5  |-  ( A  e.  QQ  ->  ( |_ `  A )  <_  A )
21 df-ne 2368 . . . . . 6  |-  ( ( |_ `  A )  =/=  A  <->  -.  ( |_ `  A )  =  A )
22 necom 2451 . . . . . . 7  |-  ( ( |_ `  A )  =/=  A  <->  A  =/=  ( |_ `  A ) )
23 qltlen 9714 . . . . . . . . . . 11  |-  ( ( ( |_ `  A
)  e.  QQ  /\  A  e.  QQ )  ->  ( ( |_ `  A )  <  A  <->  ( ( |_ `  A
)  <_  A  /\  A  =/=  ( |_ `  A ) ) ) )
246, 23mpancom 422 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  <  A  <->  ( ( |_ `  A )  <_  A  /\  A  =/=  ( |_ `  A ) ) ) )
25 breq1 4036 . . . . . . . . . . . . . 14  |-  ( ( |_ `  A )  =  ( `  A
)  ->  ( ( |_ `  A )  < 
A  <->  ( `  A )  <  A ) )
2625adantl 277 . . . . . . . . . . . . 13  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  =  ( `  A
) )  ->  (
( |_ `  A
)  <  A  <->  ( `  A
)  <  A )
)
27 ceilqge 10402 . . . . . . . . . . . . . . 15  |-  ( A  e.  QQ  ->  A  <_  ( `  A )
)
28 qre 9699 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  QQ  ->  A  e.  RR )
29 ceilqcl 10400 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  QQ  ->  ( `  A )  e.  ZZ )
3029zred 9448 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  QQ  ->  ( `  A )  e.  RR )
3128, 30lenltd 8144 . . . . . . . . . . . . . . . 16  |-  ( A  e.  QQ  ->  ( A  <_  ( `  A )  <->  -.  ( `  A )  <  A ) )
32 pm2.21 618 . . . . . . . . . . . . . . . 16  |-  ( -.  ( `  A )  <  A  ->  ( ( `  A )  <  A  ->  A  e.  ZZ ) )
3331, 32biimtrdi 163 . . . . . . . . . . . . . . 15  |-  ( A  e.  QQ  ->  ( A  <_  ( `  A )  ->  ( ( `  A
)  <  A  ->  A  e.  ZZ ) ) )
3427, 33mpd 13 . . . . . . . . . . . . . 14  |-  ( A  e.  QQ  ->  (
( `  A )  < 
A  ->  A  e.  ZZ ) )
3534adantr 276 . . . . . . . . . . . . 13  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  =  ( `  A
) )  ->  (
( `  A )  < 
A  ->  A  e.  ZZ ) )
3626, 35sylbid 150 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  =  ( `  A
) )  ->  (
( |_ `  A
)  <  A  ->  A  e.  ZZ ) )
3736ex 115 . . . . . . . . . . 11  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  ( `  A
)  ->  ( ( |_ `  A )  < 
A  ->  A  e.  ZZ ) ) )
3837com23 78 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  <  A  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) )
3924, 38sylbird 170 . . . . . . . . 9  |-  ( A  e.  QQ  ->  (
( ( |_ `  A )  <_  A  /\  A  =/=  ( |_ `  A ) )  ->  ( ( |_
`  A )  =  ( `  A )  ->  A  e.  ZZ ) ) )
4039expd 258 . . . . . . . 8  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  <_  A  ->  ( A  =/=  ( |_
`  A )  -> 
( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) ) )
4140com3r 79 . . . . . . 7  |-  ( A  =/=  ( |_ `  A )  ->  ( A  e.  QQ  ->  ( ( |_ `  A
)  <_  A  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) ) )
4222, 41sylbi 121 . . . . . 6  |-  ( ( |_ `  A )  =/=  A  ->  ( A  e.  QQ  ->  ( ( |_ `  A
)  <_  A  ->  ( ( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) ) ) )
4321, 42sylbir 135 . . . . 5  |-  ( -.  ( |_ `  A
)  =  A  -> 
( A  e.  QQ  ->  ( ( |_ `  A )  <_  A  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) ) )
4420, 43mpdi 43 . . . 4  |-  ( -.  ( |_ `  A
)  =  A  -> 
( A  e.  QQ  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) )
4519, 44jaoi 717 . . 3  |-  ( ( ( |_ `  A
)  =  A  \/  -.  ( |_ `  A
)  =  A )  ->  ( A  e.  QQ  ->  ( ( |_ `  A )  =  ( `  A )  ->  A  e.  ZZ ) ) )
4610, 45mpcom 36 . 2  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  ( `  A
)  ->  A  e.  ZZ ) )
473, 46impbid2 143 1  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( |_ `  A )  =  ( `  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033   ` cfv 5258    < clt 8061    <_ cle 8062   ZZcz 9326   QQcq 9693   |_cfl 10358  ⌈cceil 10359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-ceil 10361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator