| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqeqceilz | Unicode version | ||
| Description: A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqeqceilz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flid 10464 |
. . 3
| |
| 2 | ceilid 10497 |
. . 3
| |
| 3 | 1, 2 | eqtr4d 2243 |
. 2
|
| 4 | flqcl 10453 |
. . . . . 6
| |
| 5 | zq 9782 |
. . . . . 6
| |
| 6 | 4, 5 | syl 14 |
. . . . 5
|
| 7 | qdceq 10424 |
. . . . 5
| |
| 8 | 6, 7 | mpancom 422 |
. . . 4
|
| 9 | exmiddc 838 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | eqeq1 2214 |
. . . . . . 7
| |
| 12 | 11 | adantr 276 |
. . . . . 6
|
| 13 | ceilqidz 10498 |
. . . . . . . . 9
| |
| 14 | eqcom 2209 |
. . . . . . . . 9
| |
| 15 | 13, 14 | bitrdi 196 |
. . . . . . . 8
|
| 16 | 15 | biimprd 158 |
. . . . . . 7
|
| 17 | 16 | adantl 277 |
. . . . . 6
|
| 18 | 12, 17 | sylbid 150 |
. . . . 5
|
| 19 | 18 | ex 115 |
. . . 4
|
| 20 | flqle 10458 |
. . . . 5
| |
| 21 | df-ne 2379 |
. . . . . 6
| |
| 22 | necom 2462 |
. . . . . . 7
| |
| 23 | qltlen 9796 |
. . . . . . . . . . 11
| |
| 24 | 6, 23 | mpancom 422 |
. . . . . . . . . 10
|
| 25 | breq1 4062 |
. . . . . . . . . . . . . 14
| |
| 26 | 25 | adantl 277 |
. . . . . . . . . . . . 13
|
| 27 | ceilqge 10492 |
. . . . . . . . . . . . . . 15
| |
| 28 | qre 9781 |
. . . . . . . . . . . . . . . . 17
| |
| 29 | ceilqcl 10490 |
. . . . . . . . . . . . . . . . . 18
| |
| 30 | 29 | zred 9530 |
. . . . . . . . . . . . . . . . 17
|
| 31 | 28, 30 | lenltd 8225 |
. . . . . . . . . . . . . . . 16
|
| 32 | pm2.21 618 |
. . . . . . . . . . . . . . . 16
| |
| 33 | 31, 32 | biimtrdi 163 |
. . . . . . . . . . . . . . 15
|
| 34 | 27, 33 | mpd 13 |
. . . . . . . . . . . . . 14
|
| 35 | 34 | adantr 276 |
. . . . . . . . . . . . 13
|
| 36 | 26, 35 | sylbid 150 |
. . . . . . . . . . . 12
|
| 37 | 36 | ex 115 |
. . . . . . . . . . 11
|
| 38 | 37 | com23 78 |
. . . . . . . . . 10
|
| 39 | 24, 38 | sylbird 170 |
. . . . . . . . 9
|
| 40 | 39 | expd 258 |
. . . . . . . 8
|
| 41 | 40 | com3r 79 |
. . . . . . 7
|
| 42 | 22, 41 | sylbi 121 |
. . . . . 6
|
| 43 | 21, 42 | sylbir 135 |
. . . . 5
|
| 44 | 20, 43 | mpdi 43 |
. . . 4
|
| 45 | 19, 44 | jaoi 718 |
. . 3
|
| 46 | 10, 45 | mpcom 36 |
. 2
|
| 47 | 3, 46 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-q 9776 df-rp 9811 df-fl 10450 df-ceil 10451 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |