ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2lem Unicode version

Theorem isprm2lem 11833
Description: Lemma for isprm2 11834. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Distinct variable group:    P, n

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 520 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  =/=  1
)
21necomd 2395 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  =/=  P
)
3 simpr 109 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  ~~  2o )
4 nnz 9097 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  ZZ )
5 1dvds 11543 . . . . . . . 8  |-  ( P  e.  ZZ  ->  1  ||  P )
64, 5syl 14 . . . . . . 7  |-  ( P  e.  NN  ->  1  ||  P )
76ad2antrr 480 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  ||  P
)
8 1nn 8755 . . . . . . 7  |-  1  e.  NN
9 breq1 3940 . . . . . . . 8  |-  ( n  =  1  ->  (
n  ||  P  <->  1  ||  P ) )
109elrab3 2845 . . . . . . 7  |-  ( 1  e.  NN  ->  (
1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
) )
118, 10ax-mp 5 . . . . . 6  |-  ( 1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
)
127, 11sylibr 133 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  e.  {
n  e.  NN  |  n  ||  P } )
13 iddvds 11542 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  ||  P )
144, 13syl 14 . . . . . . 7  |-  ( P  e.  NN  ->  P  ||  P )
1514ad2antrr 480 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  ||  P
)
16 breq1 3940 . . . . . . . 8  |-  ( n  =  P  ->  (
n  ||  P  <->  P  ||  P
) )
1716elrab3 2845 . . . . . . 7  |-  ( P  e.  NN  ->  ( P  e.  { n  e.  NN  |  n  ||  P }  <->  P  ||  P ) )
1817ad2antrr 480 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( P  e. 
{ n  e.  NN  |  n  ||  P }  <->  P 
||  P ) )
1915, 18mpbird 166 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  e.  {
n  e.  NN  |  n  ||  P } )
20 en2eqpr 6809 . . . . 5  |-  ( ( { n  e.  NN  |  n  ||  P }  ~~  2o  /\  1  e. 
{ n  e.  NN  |  n  ||  P }  /\  P  e.  { n  e.  NN  |  n  ||  P } )  ->  (
1  =/=  P  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
213, 12, 19, 20syl3anc 1217 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( 1  =/= 
P  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
222, 21mpd 13 . . 3  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
)
2322ex 114 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
24 necom 2393 . . . 4  |-  ( 1  =/=  P  <->  P  =/=  1 )
25 pr2ne 7065 . . . . . 6  |-  ( ( 1  e.  NN  /\  P  e.  NN )  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
268, 25mpan 421 . . . . 5  |-  ( P  e.  NN  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
2726biimpar 295 . . . 4  |-  ( ( P  e.  NN  /\  1  =/=  P )  ->  { 1 ,  P }  ~~  2o )
2824, 27sylan2br 286 . . 3  |-  ( ( P  e.  NN  /\  P  =/=  1 )  ->  { 1 ,  P }  ~~  2o )
29 breq1 3940 . . 3  |-  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P }  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { 1 ,  P }  ~~  2o ) )
3028, 29syl5ibrcom 156 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }  ->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
3123, 30impbid 128 1  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481    =/= wne 2309   {crab 2421   {cpr 3533   class class class wbr 3937   2oc2o 6315    ~~ cen 6640   1c1 7645   NNcn 8744   ZZcz 9078    || cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-z 9079  df-dvds 11530
This theorem is referenced by:  isprm2  11834
  Copyright terms: Public domain W3C validator