ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2lem Unicode version

Theorem isprm2lem 12254
Description: Lemma for isprm2 12255. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Distinct variable group:    P, n

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 528 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  =/=  1
)
21necomd 2450 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  =/=  P
)
3 simpr 110 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  ~~  2o )
4 nnz 9336 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  ZZ )
5 1dvds 11948 . . . . . . . 8  |-  ( P  e.  ZZ  ->  1  ||  P )
64, 5syl 14 . . . . . . 7  |-  ( P  e.  NN  ->  1  ||  P )
76ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  ||  P
)
8 1nn 8993 . . . . . . 7  |-  1  e.  NN
9 breq1 4032 . . . . . . . 8  |-  ( n  =  1  ->  (
n  ||  P  <->  1  ||  P ) )
109elrab3 2917 . . . . . . 7  |-  ( 1  e.  NN  ->  (
1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
) )
118, 10ax-mp 5 . . . . . 6  |-  ( 1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
)
127, 11sylibr 134 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  e.  {
n  e.  NN  |  n  ||  P } )
13 iddvds 11947 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  ||  P )
144, 13syl 14 . . . . . . 7  |-  ( P  e.  NN  ->  P  ||  P )
1514ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  ||  P
)
16 breq1 4032 . . . . . . . 8  |-  ( n  =  P  ->  (
n  ||  P  <->  P  ||  P
) )
1716elrab3 2917 . . . . . . 7  |-  ( P  e.  NN  ->  ( P  e.  { n  e.  NN  |  n  ||  P }  <->  P  ||  P ) )
1817ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( P  e. 
{ n  e.  NN  |  n  ||  P }  <->  P 
||  P ) )
1915, 18mpbird 167 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  e.  {
n  e.  NN  |  n  ||  P } )
20 en2eqpr 6963 . . . . 5  |-  ( ( { n  e.  NN  |  n  ||  P }  ~~  2o  /\  1  e. 
{ n  e.  NN  |  n  ||  P }  /\  P  e.  { n  e.  NN  |  n  ||  P } )  ->  (
1  =/=  P  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
213, 12, 19, 20syl3anc 1249 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( 1  =/= 
P  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
222, 21mpd 13 . . 3  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
)
2322ex 115 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
24 necom 2448 . . . 4  |-  ( 1  =/=  P  <->  P  =/=  1 )
25 pr2ne 7252 . . . . . 6  |-  ( ( 1  e.  NN  /\  P  e.  NN )  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
268, 25mpan 424 . . . . 5  |-  ( P  e.  NN  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
2726biimpar 297 . . . 4  |-  ( ( P  e.  NN  /\  1  =/=  P )  ->  { 1 ,  P }  ~~  2o )
2824, 27sylan2br 288 . . 3  |-  ( ( P  e.  NN  /\  P  =/=  1 )  ->  { 1 ,  P }  ~~  2o )
29 breq1 4032 . . 3  |-  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P }  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { 1 ,  P }  ~~  2o ) )
3028, 29syl5ibrcom 157 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }  ->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
3123, 30impbid 129 1  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   {crab 2476   {cpr 3619   class class class wbr 4029   2oc2o 6463    ~~ cen 6792   1c1 7873   NNcn 8982   ZZcz 9317    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-z 9318  df-dvds 11931
This theorem is referenced by:  isprm2  12255
  Copyright terms: Public domain W3C validator