Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isprm2lem | Unicode version |
Description: Lemma for isprm2 12049. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
isprm2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 520 | . . . . 5 | |
2 | 1 | necomd 2422 | . . . 4 |
3 | simpr 109 | . . . . 5 | |
4 | nnz 9210 | . . . . . . . 8 | |
5 | 1dvds 11745 | . . . . . . . 8 | |
6 | 4, 5 | syl 14 | . . . . . . 7 |
7 | 6 | ad2antrr 480 | . . . . . 6 |
8 | 1nn 8868 | . . . . . . 7 | |
9 | breq1 3985 | . . . . . . . 8 | |
10 | 9 | elrab3 2883 | . . . . . . 7 |
11 | 8, 10 | ax-mp 5 | . . . . . 6 |
12 | 7, 11 | sylibr 133 | . . . . 5 |
13 | iddvds 11744 | . . . . . . . 8 | |
14 | 4, 13 | syl 14 | . . . . . . 7 |
15 | 14 | ad2antrr 480 | . . . . . 6 |
16 | breq1 3985 | . . . . . . . 8 | |
17 | 16 | elrab3 2883 | . . . . . . 7 |
18 | 17 | ad2antrr 480 | . . . . . 6 |
19 | 15, 18 | mpbird 166 | . . . . 5 |
20 | en2eqpr 6873 | . . . . 5 | |
21 | 3, 12, 19, 20 | syl3anc 1228 | . . . 4 |
22 | 2, 21 | mpd 13 | . . 3 |
23 | 22 | ex 114 | . 2 |
24 | necom 2420 | . . . 4 | |
25 | pr2ne 7148 | . . . . . 6 | |
26 | 8, 25 | mpan 421 | . . . . 5 |
27 | 26 | biimpar 295 | . . . 4 |
28 | 24, 27 | sylan2br 286 | . . 3 |
29 | breq1 3985 | . . 3 | |
30 | 28, 29 | syl5ibrcom 156 | . 2 |
31 | 23, 30 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wne 2336 crab 2448 cpr 3577 class class class wbr 3982 c2o 6378 cen 6704 c1 7754 cn 8857 cz 9191 cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-z 9192 df-dvds 11728 |
This theorem is referenced by: isprm2 12049 |
Copyright terms: Public domain | W3C validator |