Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isprm2lem | Unicode version |
Description: Lemma for isprm2 12009. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
isprm2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 520 | . . . . 5 | |
2 | 1 | necomd 2413 | . . . 4 |
3 | simpr 109 | . . . . 5 | |
4 | nnz 9191 | . . . . . . . 8 | |
5 | 1dvds 11712 | . . . . . . . 8 | |
6 | 4, 5 | syl 14 | . . . . . . 7 |
7 | 6 | ad2antrr 480 | . . . . . 6 |
8 | 1nn 8849 | . . . . . . 7 | |
9 | breq1 3970 | . . . . . . . 8 | |
10 | 9 | elrab3 2869 | . . . . . . 7 |
11 | 8, 10 | ax-mp 5 | . . . . . 6 |
12 | 7, 11 | sylibr 133 | . . . . 5 |
13 | iddvds 11711 | . . . . . . . 8 | |
14 | 4, 13 | syl 14 | . . . . . . 7 |
15 | 14 | ad2antrr 480 | . . . . . 6 |
16 | breq1 3970 | . . . . . . . 8 | |
17 | 16 | elrab3 2869 | . . . . . . 7 |
18 | 17 | ad2antrr 480 | . . . . . 6 |
19 | 15, 18 | mpbird 166 | . . . . 5 |
20 | en2eqpr 6854 | . . . . 5 | |
21 | 3, 12, 19, 20 | syl3anc 1220 | . . . 4 |
22 | 2, 21 | mpd 13 | . . 3 |
23 | 22 | ex 114 | . 2 |
24 | necom 2411 | . . . 4 | |
25 | pr2ne 7129 | . . . . . 6 | |
26 | 8, 25 | mpan 421 | . . . . 5 |
27 | 26 | biimpar 295 | . . . 4 |
28 | 24, 27 | sylan2br 286 | . . 3 |
29 | breq1 3970 | . . 3 | |
30 | 28, 29 | syl5ibrcom 156 | . 2 |
31 | 23, 30 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wne 2327 crab 2439 cpr 3562 class class class wbr 3967 c2o 6359 cen 6685 c1 7735 cn 8838 cz 9172 cdvds 11694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-nul 4092 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-iinf 4549 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-addcom 7834 ax-mulcom 7835 ax-addass 7836 ax-mulass 7837 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-1rid 7841 ax-0id 7842 ax-rnegex 7843 ax-cnre 7845 ax-pre-ltirr 7846 ax-pre-ltwlin 7847 ax-pre-lttrn 7848 ax-pre-ltadd 7850 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-br 3968 df-opab 4028 df-tr 4065 df-id 4255 df-iord 4328 df-on 4330 df-suc 4333 df-iom 4552 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-f1 5177 df-fo 5178 df-f1o 5179 df-fv 5180 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-1o 6365 df-2o 6366 df-er 6482 df-en 6688 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 df-le 7920 df-sub 8052 df-neg 8053 df-inn 8839 df-z 9173 df-dvds 11695 |
This theorem is referenced by: isprm2 12009 |
Copyright terms: Public domain | W3C validator |