ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2lem Unicode version

Theorem isprm2lem 12513
Description: Lemma for isprm2 12514. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Distinct variable group:    P, n

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 528 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  =/=  1
)
21necomd 2463 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  =/=  P
)
3 simpr 110 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  ~~  2o )
4 nnz 9411 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  ZZ )
5 1dvds 12191 . . . . . . . 8  |-  ( P  e.  ZZ  ->  1  ||  P )
64, 5syl 14 . . . . . . 7  |-  ( P  e.  NN  ->  1  ||  P )
76ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  ||  P
)
8 1nn 9067 . . . . . . 7  |-  1  e.  NN
9 breq1 4054 . . . . . . . 8  |-  ( n  =  1  ->  (
n  ||  P  <->  1  ||  P ) )
109elrab3 2934 . . . . . . 7  |-  ( 1  e.  NN  ->  (
1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
) )
118, 10ax-mp 5 . . . . . 6  |-  ( 1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
)
127, 11sylibr 134 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  e.  {
n  e.  NN  |  n  ||  P } )
13 iddvds 12190 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  ||  P )
144, 13syl 14 . . . . . . 7  |-  ( P  e.  NN  ->  P  ||  P )
1514ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  ||  P
)
16 breq1 4054 . . . . . . . 8  |-  ( n  =  P  ->  (
n  ||  P  <->  P  ||  P
) )
1716elrab3 2934 . . . . . . 7  |-  ( P  e.  NN  ->  ( P  e.  { n  e.  NN  |  n  ||  P }  <->  P  ||  P ) )
1817ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( P  e. 
{ n  e.  NN  |  n  ||  P }  <->  P 
||  P ) )
1915, 18mpbird 167 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  e.  {
n  e.  NN  |  n  ||  P } )
20 en2eqpr 7019 . . . . 5  |-  ( ( { n  e.  NN  |  n  ||  P }  ~~  2o  /\  1  e. 
{ n  e.  NN  |  n  ||  P }  /\  P  e.  { n  e.  NN  |  n  ||  P } )  ->  (
1  =/=  P  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
213, 12, 19, 20syl3anc 1250 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( 1  =/= 
P  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
222, 21mpd 13 . . 3  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
)
2322ex 115 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
24 necom 2461 . . . 4  |-  ( 1  =/=  P  <->  P  =/=  1 )
25 pr2ne 7315 . . . . . 6  |-  ( ( 1  e.  NN  /\  P  e.  NN )  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
268, 25mpan 424 . . . . 5  |-  ( P  e.  NN  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
2726biimpar 297 . . . 4  |-  ( ( P  e.  NN  /\  1  =/=  P )  ->  { 1 ,  P }  ~~  2o )
2824, 27sylan2br 288 . . 3  |-  ( ( P  e.  NN  /\  P  =/=  1 )  ->  { 1 ,  P }  ~~  2o )
29 breq1 4054 . . 3  |-  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P }  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { 1 ,  P }  ~~  2o ) )
3028, 29syl5ibrcom 157 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }  ->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
3123, 30impbid 129 1  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    =/= wne 2377   {crab 2489   {cpr 3639   class class class wbr 4051   2oc2o 6509    ~~ cen 6838   1c1 7946   NNcn 9056   ZZcz 9392    || cdvds 12173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1o 6515  df-2o 6516  df-er 6633  df-en 6841  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-z 9393  df-dvds 12174
This theorem is referenced by:  isprm2  12514
  Copyright terms: Public domain W3C validator