ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr2 Unicode version

Theorem fvpr2 5465
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
fvpr2.1  |-  B  e. 
_V
fvpr2.2  |-  D  e. 
_V
Assertion
Ref Expression
fvpr2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )

Proof of Theorem fvpr2
StepHypRef Expression
1 prcom 3503 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  { <. B ,  D >. ,  <. A ,  C >. }
21fveq1i 5271 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 B )  =  ( { <. B ,  D >. ,  <. A ,  C >. } `  B
)
3 necom 2335 . . 3  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvpr2.1 . . . 4  |-  B  e. 
_V
5 fvpr2.2 . . . 4  |-  D  e. 
_V
64, 5fvpr1 5464 . . 3  |-  ( B  =/=  A  ->  ( { <. B ,  D >. ,  <. A ,  C >. } `  B )  =  D )
73, 6sylbi 119 . 2  |-  ( A  =/=  B  ->  ( { <. B ,  D >. ,  <. A ,  C >. } `  B )  =  D )
82, 7syl5eq 2129 1  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1287    e. wcel 1436    =/= wne 2251   _Vcvv 2615   {cpr 3432   <.cop 3434   ` cfv 4983
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-res 4425  df-iota 4948  df-fun 4985  df-fv 4991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator