ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr2 Unicode version

Theorem fvpr2 5591
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
fvpr2.1  |-  B  e. 
_V
fvpr2.2  |-  D  e. 
_V
Assertion
Ref Expression
fvpr2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )

Proof of Theorem fvpr2
StepHypRef Expression
1 prcom 3567 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  { <. B ,  D >. ,  <. A ,  C >. }
21fveq1i 5388 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 B )  =  ( { <. B ,  D >. ,  <. A ,  C >. } `  B
)
3 necom 2367 . . 3  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvpr2.1 . . . 4  |-  B  e. 
_V
5 fvpr2.2 . . . 4  |-  D  e. 
_V
64, 5fvpr1 5590 . . 3  |-  ( B  =/=  A  ->  ( { <. B ,  D >. ,  <. A ,  C >. } `  B )  =  D )
73, 6sylbi 120 . 2  |-  ( A  =/=  B  ->  ( { <. B ,  D >. ,  <. A ,  C >. } `  B )  =  D )
82, 7syl5eq 2160 1  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463    =/= wne 2283   _Vcvv 2658   {cpr 3496   <.cop 3498   ` cfv 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-res 4519  df-iota 5056  df-fun 5093  df-fv 5099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator