ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr1 Unicode version

Theorem fvpr1 5843
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
fvpr1.1  |-  A  e. 
_V
fvpr1.2  |-  C  e. 
_V
Assertion
Ref Expression
fvpr1  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  C )

Proof of Theorem fvpr1
StepHypRef Expression
1 df-pr 3673 . . . 4  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21fveq1i 5628 . . 3  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 A )  =  ( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )
3 necom 2484 . . . 4  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvpr1.1 . . . . 5  |-  A  e. 
_V
5 fvunsng 5833 . . . . 5  |-  ( ( A  e.  _V  /\  B  =/=  A )  -> 
( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
64, 5mpan 424 . . . 4  |-  ( B  =/=  A  ->  (
( { <. A ,  C >. }  u.  { <. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
73, 6sylbi 121 . . 3  |-  ( A  =/=  B  ->  (
( { <. A ,  C >. }  u.  { <. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
82, 7eqtrid 2274 . 2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  ( { <. A ,  C >. } `  A ) )
9 fvpr1.2 . . 3  |-  C  e. 
_V
104, 9fvsn 5834 . 2  |-  ( {
<. A ,  C >. } `
 A )  =  C
118, 10eqtrdi 2278 1  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799    u. cun 3195   {csn 3666   {cpr 3667   <.cop 3669   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by:  fvpr2  5844
  Copyright terms: Public domain W3C validator