ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nftpos Unicode version

Theorem nftpos 6388
Description: Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
nftpos.1  |-  F/_ x F
Assertion
Ref Expression
nftpos  |-  F/_ xtpos  F

Proof of Theorem nftpos
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dftpos4 6372 . 2  |- tpos  F  =  ( F  o.  (
y  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { y } ) )
2 nftpos.1 . . 3  |-  F/_ x F
3 nfcv 2350 . . 3  |-  F/_ x
( y  e.  ( ( _V  X.  _V )  u.  { (/) } ) 
|->  U. `' { y } )
42, 3nfco 4861 . 2  |-  F/_ x
( F  o.  (
y  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { y } ) )
51, 4nfcxfr 2347 1  |-  F/_ xtpos  F
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2337   _Vcvv 2776    u. cun 3172   (/)c0 3468   {csn 3643   U.cuni 3864    |-> cmpt 4121    X. cxp 4691   `'ccnv 4692    o. ccom 4697  tpos ctpos 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-tpos 6354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator