ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt11 Unicode version

Theorem cnmpt11 14870
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt11.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt11.b  |-  ( ph  ->  ( y  e.  Y  |->  B )  e.  ( K  Cn  L ) )
cnmpt11.c  |-  ( y  =  A  ->  B  =  C )
Assertion
Ref Expression
cnmpt11  |-  ( ph  ->  ( x  e.  X  |->  C )  e.  ( J  Cn  L ) )
Distinct variable groups:    y, A    x, y    ph, x    x, J, y    x, X, y    x, Y, y    x, K, y   
x, L, y    x, B    y, C
Allowed substitution hints:    ph( y)    A( x)    B( y)    C( x)

Proof of Theorem cnmpt11
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
2 cnmptid.j . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 cnmpt11.k . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
4 cnmpt11.a . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
5 cnf2 14792 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )  ->  ( x  e.  X  |->  A ) : X --> Y )
62, 3, 4, 5syl3anc 1250 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> Y )
7 eqid 2207 . . . . . . . . . . . 12  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
87fmpt 5753 . . . . . . . . . . 11  |-  ( A. x  e.  X  A  e.  Y  <->  ( x  e.  X  |->  A ) : X --> Y )
96, 8sylibr 134 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  X  A  e.  Y )
109r19.21bi 2596 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
117fvmpt2 5686 . . . . . . . . 9  |-  ( ( x  e.  X  /\  A  e.  Y )  ->  ( ( x  e.  X  |->  A ) `  x )  =  A )
121, 10, 11syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  A ) `  x
)  =  A )
1312fveq2d 5603 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
( y  e.  Y  |->  B ) `  (
( x  e.  X  |->  A ) `  x
) )  =  ( ( y  e.  Y  |->  B ) `  A
) )
14 eqid 2207 . . . . . . . 8  |-  ( y  e.  Y  |->  B )  =  ( y  e.  Y  |->  B )
15 cnmpt11.c . . . . . . . 8  |-  ( y  =  A  ->  B  =  C )
1615eleq1d 2276 . . . . . . . . 9  |-  ( y  =  A  ->  ( B  e.  U. L  <->  C  e.  U. L ) )
17 cnmpt11.b . . . . . . . . . . . . . 14  |-  ( ph  ->  ( y  e.  Y  |->  B )  e.  ( K  Cn  L ) )
18 cntop2 14789 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Y  |->  B )  e.  ( K  Cn  L )  ->  L  e.  Top )
1917, 18syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  Top )
20 eqid 2207 . . . . . . . . . . . . . 14  |-  U. L  =  U. L
2120toptopon 14605 . . . . . . . . . . . . 13  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
2219, 21sylib 122 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
23 cnf2 14792 . . . . . . . . . . . 12  |-  ( ( K  e.  (TopOn `  Y )  /\  L  e.  (TopOn `  U. L )  /\  ( y  e.  Y  |->  B )  e.  ( K  Cn  L
) )  ->  (
y  e.  Y  |->  B ) : Y --> U. L
)
243, 22, 17, 23syl3anc 1250 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  Y  |->  B ) : Y --> U. L )
2514fmpt 5753 . . . . . . . . . . 11  |-  ( A. y  e.  Y  B  e.  U. L  <->  ( y  e.  Y  |->  B ) : Y --> U. L
)
2624, 25sylibr 134 . . . . . . . . . 10  |-  ( ph  ->  A. y  e.  Y  B  e.  U. L )
2726adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  B  e.  U. L )
2816, 27, 10rspcdva 2889 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  U. L )
2914, 15, 10, 28fvmptd3 5696 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
( y  e.  Y  |->  B ) `  A
)  =  C )
3013, 29eqtrd 2240 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( y  e.  Y  |->  B ) `  (
( x  e.  X  |->  A ) `  x
) )  =  C )
31 fvco3 5673 . . . . . . 7  |-  ( ( ( x  e.  X  |->  A ) : X --> Y  /\  x  e.  X
)  ->  ( (
( y  e.  Y  |->  B )  o.  (
x  e.  X  |->  A ) ) `  x
)  =  ( ( y  e.  Y  |->  B ) `  ( ( x  e.  X  |->  A ) `  x ) ) )
326, 31sylan 283 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `  x )  =  ( ( y  e.  Y  |->  B ) `  (
( x  e.  X  |->  A ) `  x
) ) )
33 eqid 2207 . . . . . . . 8  |-  ( x  e.  X  |->  C )  =  ( x  e.  X  |->  C )
3433fvmpt2 5686 . . . . . . 7  |-  ( ( x  e.  X  /\  C  e.  U. L )  ->  ( ( x  e.  X  |->  C ) `
 x )  =  C )
351, 28, 34syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  C ) `  x
)  =  C )
3630, 32, 353eqtr4d 2250 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `  x )  =  ( ( x  e.  X  |->  C ) `  x
) )
3736ralrimiva 2581 . . . 4  |-  ( ph  ->  A. x  e.  X  ( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `
 x )  =  ( ( x  e.  X  |->  C ) `  x ) )
38 nfv 1552 . . . . 5  |-  F/ z ( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `
 x )  =  ( ( x  e.  X  |->  C ) `  x )
39 nfcv 2350 . . . . . . . 8  |-  F/_ x
( y  e.  Y  |->  B )
40 nfmpt1 4153 . . . . . . . 8  |-  F/_ x
( x  e.  X  |->  A )
4139, 40nfco 4861 . . . . . . 7  |-  F/_ x
( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) )
42 nfcv 2350 . . . . . . 7  |-  F/_ x
z
4341, 42nffv 5609 . . . . . 6  |-  F/_ x
( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `
 z )
44 nfmpt1 4153 . . . . . . 7  |-  F/_ x
( x  e.  X  |->  C )
4544, 42nffv 5609 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  C ) `  z )
4643, 45nfeq 2358 . . . . 5  |-  F/ x
( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `
 z )  =  ( ( x  e.  X  |->  C ) `  z )
47 fveq2 5599 . . . . . 6  |-  ( x  =  z  ->  (
( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `  x )  =  ( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `  z ) )
48 fveq2 5599 . . . . . 6  |-  ( x  =  z  ->  (
( x  e.  X  |->  C ) `  x
)  =  ( ( x  e.  X  |->  C ) `  z ) )
4947, 48eqeq12d 2222 . . . . 5  |-  ( x  =  z  ->  (
( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `
 x )  =  ( ( x  e.  X  |->  C ) `  x )  <->  ( (
( y  e.  Y  |->  B )  o.  (
x  e.  X  |->  A ) ) `  z
)  =  ( ( x  e.  X  |->  C ) `  z ) ) )
5038, 46, 49cbvral 2738 . . . 4  |-  ( A. x  e.  X  (
( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `  x )  =  ( ( x  e.  X  |->  C ) `  x
)  <->  A. z  e.  X  ( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `
 z )  =  ( ( x  e.  X  |->  C ) `  z ) )
5137, 50sylib 122 . . 3  |-  ( ph  ->  A. z  e.  X  ( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) `
 z )  =  ( ( x  e.  X  |->  C ) `  z ) )
52 fco 5461 . . . . . 6  |-  ( ( ( y  e.  Y  |->  B ) : Y --> U. L  /\  (
x  e.  X  |->  A ) : X --> Y )  ->  ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) : X --> U. L
)
5324, 6, 52syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) ) : X --> U. L )
5453ffnd 5446 . . . 4  |-  ( ph  ->  ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) )  Fn  X )
5528fmpttd 5758 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  C ) : X --> U. L )
5655ffnd 5446 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  C )  Fn  X
)
57 eqfnfv 5700 . . . 4  |-  ( ( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) )  Fn  X  /\  ( x  e.  X  |->  C )  Fn  X )  -> 
( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  C )  <->  A. z  e.  X  ( (
( y  e.  Y  |->  B )  o.  (
x  e.  X  |->  A ) ) `  z
)  =  ( ( x  e.  X  |->  C ) `  z ) ) )
5854, 56, 57syl2anc 411 . . 3  |-  ( ph  ->  ( ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  C )  <->  A. z  e.  X  ( (
( y  e.  Y  |->  B )  o.  (
x  e.  X  |->  A ) ) `  z
)  =  ( ( x  e.  X  |->  C ) `  z ) ) )
5951, 58mpbird 167 . 2  |-  ( ph  ->  ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  C ) )
60 cnco 14808 . . 3  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  /\  ( y  e.  Y  |->  B )  e.  ( K  Cn  L
) )  ->  (
( y  e.  Y  |->  B )  o.  (
x  e.  X  |->  A ) )  e.  ( J  Cn  L ) )
614, 17, 60syl2anc 411 . 2  |-  ( ph  ->  ( ( y  e.  Y  |->  B )  o.  ( x  e.  X  |->  A ) )  e.  ( J  Cn  L
) )
6259, 61eqeltrrd 2285 1  |-  ( ph  ->  ( x  e.  X  |->  C )  e.  ( J  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   U.cuni 3864    |-> cmpt 4121    o. ccom 4697    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967   Topctop 14584  TopOnctopon 14597    Cn ccn 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-top 14585  df-topon 14598  df-cn 14775
This theorem is referenced by:  cnmpt11f  14871
  Copyright terms: Public domain W3C validator