ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isummulc2 Unicode version

Theorem isummulc2 11367
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1  |-  Z  =  ( ZZ>= `  M )
isumcl.2  |-  ( ph  ->  M  e.  ZZ )
isumcl.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumcl.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumcl.5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
summulc.6  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
isummulc2  |-  ( ph  ->  ( B  x.  sum_ k  e.  Z  A
)  =  sum_ k  e.  Z  ( B  x.  A ) )
Distinct variable groups:    B, k    k, F    ph, k    k, Z   
k, M
Allowed substitution hint:    A( k)

Proof of Theorem isummulc2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 isumcl.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 isumcl.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 eqidd 2166 . . 3  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  m
)  =  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m ) )
4 summulc.6 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
54adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
6 isumcl.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
75, 6mulcld 7919 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( B  x.  A )  e.  CC )
87fmpttd 5640 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( B  x.  A
) ) : Z --> CC )
98ffvelrnda 5620 . . 3  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  m
)  e.  CC )
10 isumcl.3 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
11 isumcl.5 . . . . 5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
121, 2, 10, 6, 11isumclim2 11363 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  Z  A )
1310, 6eqeltrd 2243 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1413ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
15 fveq2 5486 . . . . . . 7  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
1615eleq1d 2235 . . . . . 6  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
1716rspccva 2829 . . . . 5  |-  ( ( A. k  e.  Z  ( F `  k )  e.  CC  /\  m  e.  Z )  ->  ( F `  m )  e.  CC )
1814, 17sylan 281 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  ( F `  m )  e.  CC )
19 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
20 eqid 2165 . . . . . . . . 9  |-  ( k  e.  Z  |->  ( B  x.  A ) )  =  ( k  e.  Z  |->  ( B  x.  A ) )
2120fvmpt2 5569 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ( B  x.  A
)  e.  CC )  ->  ( ( k  e.  Z  |->  ( B  x.  A ) ) `
 k )  =  ( B  x.  A
) )
2219, 7, 21syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  k
)  =  ( B  x.  A ) )
2310oveq2d 5858 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( B  x.  ( F `  k ) )  =  ( B  x.  A
) )
2422, 23eqtr4d 2201 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  k
)  =  ( B  x.  ( F `  k ) ) )
2524ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. k  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  ( F `
 k ) ) )
26 nffvmpt1 5497 . . . . . . 7  |-  F/_ k
( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )
2726nfeq1 2318 . . . . . 6  |-  F/ k ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  ( B  x.  ( F `
 m ) )
28 fveq2 5486 . . . . . . 7  |-  ( k  =  m  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  k
)  =  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m ) )
2915oveq2d 5858 . . . . . . 7  |-  ( k  =  m  ->  ( B  x.  ( F `  k ) )  =  ( B  x.  ( F `  m )
) )
3028, 29eqeq12d 2180 . . . . . 6  |-  ( k  =  m  ->  (
( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  ( F `
 k ) )  <-> 
( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  ( B  x.  ( F `
 m ) ) ) )
3127, 30rspc 2824 . . . . 5  |-  ( m  e.  Z  ->  ( A. k  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  ( F `
 k ) )  ->  ( ( k  e.  Z  |->  ( B  x.  A ) ) `
 m )  =  ( B  x.  ( F `  m )
) ) )
3225, 31mpan9 279 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  m
)  =  ( B  x.  ( F `  m ) ) )
331, 2, 4, 12, 18, 32isermulc2 11281 . . 3  |-  ( ph  ->  seq M (  +  ,  ( k  e.  Z  |->  ( B  x.  A ) ) )  ~~>  ( B  x.  sum_ k  e.  Z  A
) )
341, 2, 3, 9, 33isumclim 11362 . 2  |-  ( ph  -> 
sum_ m  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  ( B  x.  sum_ k  e.  Z  A )
)
357ralrimiva 2539 . . 3  |-  ( ph  ->  A. k  e.  Z  ( B  x.  A
)  e.  CC )
36 sumfct 11315 . . 3  |-  ( A. k  e.  Z  ( B  x.  A )  e.  CC  ->  sum_ m  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `
 m )  = 
sum_ k  e.  Z  ( B  x.  A
) )
3735, 36syl 14 . 2  |-  ( ph  -> 
sum_ m  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  sum_ k  e.  Z  ( B  x.  A )
)
3834, 37eqtr3d 2200 1  |-  ( ph  ->  ( B  x.  sum_ k  e.  Z  A
)  =  sum_ k  e.  Z  ( B  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444    |-> cmpt 4043   dom cdm 4604   ` cfv 5188  (class class class)co 5842   CCcc 7751    + caddc 7756    x. cmul 7758   ZZcz 9191   ZZ>=cuz 9466    seqcseq 10380    ~~> cli 11219   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  isummulc1  11368  trirecip  11442  geoisum1c  11461
  Copyright terms: Public domain W3C validator