ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isummulc2 Unicode version

Theorem isummulc2 11737
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1  |-  Z  =  ( ZZ>= `  M )
isumcl.2  |-  ( ph  ->  M  e.  ZZ )
isumcl.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumcl.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumcl.5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
summulc.6  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
isummulc2  |-  ( ph  ->  ( B  x.  sum_ k  e.  Z  A
)  =  sum_ k  e.  Z  ( B  x.  A ) )
Distinct variable groups:    B, k    k, F    ph, k    k, Z   
k, M
Allowed substitution hint:    A( k)

Proof of Theorem isummulc2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 isumcl.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 isumcl.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 eqidd 2206 . . 3  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  m
)  =  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m ) )
4 summulc.6 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
54adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
6 isumcl.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
75, 6mulcld 8093 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( B  x.  A )  e.  CC )
87fmpttd 5735 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( B  x.  A
) ) : Z --> CC )
98ffvelcdmda 5715 . . 3  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  m
)  e.  CC )
10 isumcl.3 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
11 isumcl.5 . . . . 5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
121, 2, 10, 6, 11isumclim2 11733 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  Z  A )
1310, 6eqeltrd 2282 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1413ralrimiva 2579 . . . . 5  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
15 fveq2 5576 . . . . . . 7  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
1615eleq1d 2274 . . . . . 6  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
1716rspccva 2876 . . . . 5  |-  ( ( A. k  e.  Z  ( F `  k )  e.  CC  /\  m  e.  Z )  ->  ( F `  m )  e.  CC )
1814, 17sylan 283 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  ( F `  m )  e.  CC )
19 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
20 eqid 2205 . . . . . . . . 9  |-  ( k  e.  Z  |->  ( B  x.  A ) )  =  ( k  e.  Z  |->  ( B  x.  A ) )
2120fvmpt2 5663 . . . . . . . 8  |-  ( ( k  e.  Z  /\  ( B  x.  A
)  e.  CC )  ->  ( ( k  e.  Z  |->  ( B  x.  A ) ) `
 k )  =  ( B  x.  A
) )
2219, 7, 21syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  k
)  =  ( B  x.  A ) )
2310oveq2d 5960 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( B  x.  ( F `  k ) )  =  ( B  x.  A
) )
2422, 23eqtr4d 2241 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  k
)  =  ( B  x.  ( F `  k ) ) )
2524ralrimiva 2579 . . . . 5  |-  ( ph  ->  A. k  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  ( F `
 k ) ) )
26 nffvmpt1 5587 . . . . . . 7  |-  F/_ k
( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )
2726nfeq1 2358 . . . . . 6  |-  F/ k ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  ( B  x.  ( F `
 m ) )
28 fveq2 5576 . . . . . . 7  |-  ( k  =  m  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  k
)  =  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m ) )
2915oveq2d 5960 . . . . . . 7  |-  ( k  =  m  ->  ( B  x.  ( F `  k ) )  =  ( B  x.  ( F `  m )
) )
3028, 29eqeq12d 2220 . . . . . 6  |-  ( k  =  m  ->  (
( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  ( F `
 k ) )  <-> 
( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  ( B  x.  ( F `
 m ) ) ) )
3127, 30rspc 2871 . . . . 5  |-  ( m  e.  Z  ->  ( A. k  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  k )  =  ( B  x.  ( F `
 k ) )  ->  ( ( k  e.  Z  |->  ( B  x.  A ) ) `
 m )  =  ( B  x.  ( F `  m )
) ) )
3225, 31mpan9 281 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  ( B  x.  A
) ) `  m
)  =  ( B  x.  ( F `  m ) ) )
331, 2, 4, 12, 18, 32isermulc2 11651 . . 3  |-  ( ph  ->  seq M (  +  ,  ( k  e.  Z  |->  ( B  x.  A ) ) )  ~~>  ( B  x.  sum_ k  e.  Z  A
) )
341, 2, 3, 9, 33isumclim 11732 . 2  |-  ( ph  -> 
sum_ m  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  ( B  x.  sum_ k  e.  Z  A )
)
357ralrimiva 2579 . . 3  |-  ( ph  ->  A. k  e.  Z  ( B  x.  A
)  e.  CC )
36 sumfct 11685 . . 3  |-  ( A. k  e.  Z  ( B  x.  A )  e.  CC  ->  sum_ m  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `
 m )  = 
sum_ k  e.  Z  ( B  x.  A
) )
3735, 36syl 14 . 2  |-  ( ph  -> 
sum_ m  e.  Z  ( ( k  e.  Z  |->  ( B  x.  A ) ) `  m )  =  sum_ k  e.  Z  ( B  x.  A )
)
3834, 37eqtr3d 2240 1  |-  ( ph  ->  ( B  x.  sum_ k  e.  Z  A
)  =  sum_ k  e.  Z  ( B  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484    |-> cmpt 4105   dom cdm 4675   ` cfv 5271  (class class class)co 5944   CCcc 7923    + caddc 7928    x. cmul 7930   ZZcz 9372   ZZ>=cuz 9648    seqcseq 10592    ~~> cli 11589   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  isummulc1  11738  trirecip  11812  geoisum1c  11831
  Copyright terms: Public domain W3C validator