ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum00 Unicode version

Theorem fsum00 11973
Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1  |-  ( ph  ->  A  e.  Fin )
fsumge0.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fsumge0.3  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
fsum00  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsum00
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumge0.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  Fin )
21adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  A  e.  Fin )
3 fsumge0.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
43adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  B  e.  RR )
5 fsumge0.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
65adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  0  <_  B )
7 snssi 3812 . . . . . . . . . 10  |-  ( m  e.  A  ->  { m }  C_  A )
87adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  { m }  C_  A )
9 snfig 6967 . . . . . . . . . 10  |-  ( m  e.  A  ->  { m }  e.  Fin )
109adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  { m }  e.  Fin )
112, 4, 6, 8, 10fsumlessfi 11971 . . . . . . . 8  |-  ( (
ph  /\  m  e.  A )  ->  sum_ k  e.  { m } B  <_ 
sum_ k  e.  A  B )
1211adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  <_  sum_ k  e.  A  B
)
13 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  m  e.  A )
143, 5jca 306 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( B  e.  RR  /\  0  <_  B ) )
1514ralrimiva 2603 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B )
)
1615adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B ) )
17 nfcsb1v 3157 . . . . . . . . . . . . . 14  |-  F/_ k [_ m  /  k ]_ B
1817nfel1 2383 . . . . . . . . . . . . 13  |-  F/ k
[_ m  /  k ]_ B  e.  RR
19 nfcv 2372 . . . . . . . . . . . . . 14  |-  F/_ k
0
20 nfcv 2372 . . . . . . . . . . . . . 14  |-  F/_ k  <_
2119, 20, 17nfbr 4130 . . . . . . . . . . . . 13  |-  F/ k 0  <_  [_ m  / 
k ]_ B
2218, 21nfan 1611 . . . . . . . . . . . 12  |-  F/ k ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B )
23 csbeq1a 3133 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
2423eleq1d 2298 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( B  e.  RR  <->  [_ m  / 
k ]_ B  e.  RR ) )
2523breq2d 4095 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
0  <_  B  <->  0  <_  [_ m  /  k ]_ B ) )
2624, 25anbi12d 473 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( B  e.  RR  /\  0  <_  B )  <->  (
[_ m  /  k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2722, 26rspc 2901 . . . . . . . . . . 11  |-  ( m  e.  A  ->  ( A. k  e.  A  ( B  e.  RR  /\  0  <_  B )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2816, 27mpan9 281 . . . . . . . . . 10  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) )
2928simpld 112 . . . . . . . . 9  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  RR )
3029recnd 8175 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
31 sumsns 11926 . . . . . . . 8  |-  ( ( m  e.  A  /\  [_ m  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
3213, 30, 31syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
33 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  A  B  =  0 )
3412, 32, 333brtr3d 4114 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  <_  0 )
3528simprd 114 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  0  <_  [_ m  / 
k ]_ B )
36 0re 8146 . . . . . . 7  |-  0  e.  RR
37 letri3 8227 . . . . . . 7  |-  ( (
[_ m  /  k ]_ B  e.  RR  /\  0  e.  RR )  ->  ( [_ m  /  k ]_ B  =  0  <->  ( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  /  k ]_ B ) ) )
3829, 36, 37sylancl 413 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  =  0  <-> 
( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  / 
k ]_ B ) ) )
3934, 35, 38mpbir2and 950 . . . . 5  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  =  0
)
4039ralrimiva 2603 . . . 4  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
41 nfv 1574 . . . . 5  |-  F/ m  B  =  0
4217nfeq1 2382 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  =  0
4323eqeq1d 2238 . . . . 5  |-  ( k  =  m  ->  ( B  =  0  <->  [_ m  / 
k ]_ B  =  0 ) )
4441, 42, 43cbvral 2761 . . . 4  |-  ( A. k  e.  A  B  =  0  <->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
4540, 44sylibr 134 . . 3  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  B  = 
0 )
4645ex 115 . 2  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  ->  A. k  e.  A  B  =  0 ) )
47 isumz 11900 . . . . 5  |-  ( ( ( 0  e.  ZZ  /\  A  C_  ( ZZ>= ` 
0 )  /\  A. x  e.  ( ZZ>= ` 
0 )DECID  x  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
4847olcs 741 . . . 4  |-  ( A  e.  Fin  ->  sum_ k  e.  A  0  = 
0 )
49 sumeq2 11870 . . . . 5  |-  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  0 )
5049eqeq1d 2238 . . . 4  |-  ( A. k  e.  A  B  =  0  ->  ( sum_ k  e.  A  B  =  0  <->  sum_ k  e.  A  0  =  0 ) )
5148, 50syl5ibrcom 157 . . 3  |-  ( A  e.  Fin  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
521, 51syl 14 . 2  |-  ( ph  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
5346, 52impbid 129 1  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   [_csb 3124    C_ wss 3197   {csn 3666   class class class wbr 4083   ` cfv 5318   Fincfn 6887   CCcc 7997   RRcr 7998   0cc0 7999    <_ cle 8182   ZZcz 9446   ZZ>=cuz 9722   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-ico 10090  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator