ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum00 Unicode version

Theorem fsum00 11263
Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1  |-  ( ph  ->  A  e.  Fin )
fsumge0.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fsumge0.3  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
fsum00  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsum00
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumge0.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  Fin )
21adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  A  e.  Fin )
3 fsumge0.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
43adantlr 469 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  B  e.  RR )
5 fsumge0.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
65adantlr 469 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  0  <_  B )
7 snssi 3672 . . . . . . . . . 10  |-  ( m  e.  A  ->  { m }  C_  A )
87adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  { m }  C_  A )
9 snfig 6716 . . . . . . . . . 10  |-  ( m  e.  A  ->  { m }  e.  Fin )
109adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  { m }  e.  Fin )
112, 4, 6, 8, 10fsumlessfi 11261 . . . . . . . 8  |-  ( (
ph  /\  m  e.  A )  ->  sum_ k  e.  { m } B  <_ 
sum_ k  e.  A  B )
1211adantlr 469 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  <_  sum_ k  e.  A  B
)
13 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  m  e.  A )
143, 5jca 304 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( B  e.  RR  /\  0  <_  B ) )
1514ralrimiva 2508 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B )
)
1615adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B ) )
17 nfcsb1v 3040 . . . . . . . . . . . . . 14  |-  F/_ k [_ m  /  k ]_ B
1817nfel1 2293 . . . . . . . . . . . . 13  |-  F/ k
[_ m  /  k ]_ B  e.  RR
19 nfcv 2282 . . . . . . . . . . . . . 14  |-  F/_ k
0
20 nfcv 2282 . . . . . . . . . . . . . 14  |-  F/_ k  <_
2119, 20, 17nfbr 3982 . . . . . . . . . . . . 13  |-  F/ k 0  <_  [_ m  / 
k ]_ B
2218, 21nfan 1545 . . . . . . . . . . . 12  |-  F/ k ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B )
23 csbeq1a 3016 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
2423eleq1d 2209 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( B  e.  RR  <->  [_ m  / 
k ]_ B  e.  RR ) )
2523breq2d 3949 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
0  <_  B  <->  0  <_  [_ m  /  k ]_ B ) )
2624, 25anbi12d 465 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( B  e.  RR  /\  0  <_  B )  <->  (
[_ m  /  k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2722, 26rspc 2787 . . . . . . . . . . 11  |-  ( m  e.  A  ->  ( A. k  e.  A  ( B  e.  RR  /\  0  <_  B )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2816, 27mpan9 279 . . . . . . . . . 10  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) )
2928simpld 111 . . . . . . . . 9  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  RR )
3029recnd 7818 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
31 sumsns 11216 . . . . . . . 8  |-  ( ( m  e.  A  /\  [_ m  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
3213, 30, 31syl2anc 409 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
33 simplr 520 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  A  B  =  0 )
3412, 32, 333brtr3d 3967 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  <_  0 )
3528simprd 113 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  0  <_  [_ m  / 
k ]_ B )
36 0re 7790 . . . . . . 7  |-  0  e.  RR
37 letri3 7869 . . . . . . 7  |-  ( (
[_ m  /  k ]_ B  e.  RR  /\  0  e.  RR )  ->  ( [_ m  /  k ]_ B  =  0  <->  ( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  /  k ]_ B ) ) )
3829, 36, 37sylancl 410 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  =  0  <-> 
( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  / 
k ]_ B ) ) )
3934, 35, 38mpbir2and 929 . . . . 5  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  =  0
)
4039ralrimiva 2508 . . . 4  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
41 nfv 1509 . . . . 5  |-  F/ m  B  =  0
4217nfeq1 2292 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  =  0
4323eqeq1d 2149 . . . . 5  |-  ( k  =  m  ->  ( B  =  0  <->  [_ m  / 
k ]_ B  =  0 ) )
4441, 42, 43cbvral 2653 . . . 4  |-  ( A. k  e.  A  B  =  0  <->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
4540, 44sylibr 133 . . 3  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  B  = 
0 )
4645ex 114 . 2  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  ->  A. k  e.  A  B  =  0 ) )
47 isumz 11190 . . . . 5  |-  ( ( ( 0  e.  ZZ  /\  A  C_  ( ZZ>= ` 
0 )  /\  A. x  e.  ( ZZ>= ` 
0 )DECID  x  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
4847olcs 726 . . . 4  |-  ( A  e.  Fin  ->  sum_ k  e.  A  0  = 
0 )
49 sumeq2 11160 . . . . 5  |-  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  0 )
5049eqeq1d 2149 . . . 4  |-  ( A. k  e.  A  B  =  0  ->  ( sum_ k  e.  A  B  =  0  <->  sum_ k  e.  A  0  =  0 ) )
5148, 50syl5ibrcom 156 . . 3  |-  ( A  e.  Fin  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
521, 51syl 14 . 2  |-  ( ph  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
5346, 52impbid 128 1  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   [_csb 3007    C_ wss 3076   {csn 3532   class class class wbr 3937   ` cfv 5131   Fincfn 6642   CCcc 7642   RRcr 7643   0cc0 7644    <_ cle 7825   ZZcz 9078   ZZ>=cuz 9350   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator