ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumshft Unicode version

Theorem isumshft 11210
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1  |-  Z  =  ( ZZ>= `  M )
isumshft.2  |-  W  =  ( ZZ>= `  ( M  +  K ) )
isumshft.3  |-  ( j  =  ( K  +  k )  ->  A  =  B )
isumshft.4  |-  ( ph  ->  K  e.  ZZ )
isumshft.5  |-  ( ph  ->  M  e.  ZZ )
isumshft.6  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
Assertion
Ref Expression
isumshft  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    j,
k, K    ph, j, k   
j, W, k    B, j    j, Z, k
Allowed substitution hints:    A( j)    B( k)    M( j, k)

Proof of Theorem isumshft
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2 isumshft.4 . . . . . . . . 9  |-  ( ph  ->  K  e.  ZZ )
31, 2zaddcld 9131 . . . . . . . 8  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
4 isumshft.2 . . . . . . . . . . . . 13  |-  W  =  ( ZZ>= `  ( M  +  K ) )
54eleq2i 2182 . . . . . . . . . . . 12  |-  ( x  e.  W  <->  x  e.  ( ZZ>= `  ( M  +  K ) ) )
65biimpri 132 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  ( M  +  K )
)  ->  x  e.  W )
76adantl 273 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  x  e.  W
)
8 isumshft.6 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
98ralrimiva 2480 . . . . . . . . . . . 12  |-  ( ph  ->  A. j  e.  W  A  e.  CC )
109adantr 272 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  A. j  e.  W  A  e.  CC )
11 nfcsb1v 3003 . . . . . . . . . . . . 13  |-  F/_ j [_ x  /  j ]_ A
1211nfel1 2267 . . . . . . . . . . . 12  |-  F/ j
[_ x  /  j ]_ A  e.  CC
13 csbeq1a 2981 . . . . . . . . . . . . 13  |-  ( j  =  x  ->  A  =  [_ x  /  j ]_ A )
1413eleq1d 2184 . . . . . . . . . . . 12  |-  ( j  =  x  ->  ( A  e.  CC  <->  [_ x  / 
j ]_ A  e.  CC ) )
1512, 14rspc 2755 . . . . . . . . . . 11  |-  ( x  e.  W  ->  ( A. j  e.  W  A  e.  CC  ->  [_ x  /  j ]_ A  e.  CC )
)
167, 10, 15sylc 62 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  [_ x  /  j ]_ A  e.  CC )
17 eqid 2115 . . . . . . . . . . 11  |-  ( j  e.  W  |->  A )  =  ( j  e.  W  |->  A )
1817fvmpts 5465 . . . . . . . . . 10  |-  ( ( x  e.  W  /\  [_ x  /  j ]_ A  e.  CC )  ->  ( ( j  e.  W  |->  A ) `  x )  =  [_ x  /  j ]_ A
)
197, 16, 18syl2anc 406 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( ( j  e.  W  |->  A ) `
 x )  = 
[_ x  /  j ]_ A )
2019, 16eqeltrd 2192 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( ( j  e.  W  |->  A ) `
 x )  e.  CC )
214eleq2i 2182 . . . . . . . . 9  |-  ( m  e.  W  <->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
222zcnd 9128 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  CC )
23 eluzelcn 9289 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  ( M  +  K )
)  ->  m  e.  CC )
2423, 4eleq2s 2210 . . . . . . . . . . 11  |-  ( m  e.  W  ->  m  e.  CC )
25 zex 9017 . . . . . . . . . . . . . 14  |-  ZZ  e.  _V
26 isumshft.1 . . . . . . . . . . . . . . 15  |-  Z  =  ( ZZ>= `  M )
27 uzssz 9297 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  M )  C_  ZZ
2826, 27eqsstri 3097 . . . . . . . . . . . . . 14  |-  Z  C_  ZZ
2925, 28ssexi 4034 . . . . . . . . . . . . 13  |-  Z  e. 
_V
3029mptex 5612 . . . . . . . . . . . 12  |-  ( k  e.  Z  |->  B )  e.  _V
3130shftval 10548 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
3222, 24, 31syl2an 285 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( ( k  e.  Z  |->  B )  shift  K ) `  m )  =  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) ) )
33 eqidd 2116 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  e.  Z  |->  B )  =  ( k  e.  Z  |->  B ) )
34 isumshft.3 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  ( K  +  k )  ->  A  =  B )
3534eleq1d 2184 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( K  +  k )  ->  ( A  e.  CC  <->  B  e.  CC ) )
369adantr 272 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  Z )  ->  A. j  e.  W  A  e.  CC )
371adantr 272 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  M  e.  ZZ )
382adantr 272 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  ZZ )
3937, 38zaddcld 9131 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  Z )  ->  ( M  +  K )  e.  ZZ )
40 eluzelz 9287 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
4140, 26eleq2s 2210 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  Z  ->  k  e.  ZZ )
4241adantl 273 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ZZ )
4338, 42zaddcld 9131 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  ZZ )
4437zred 9127 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  M  e.  RR )
4542zred 9127 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  RR )
4638zred 9127 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  RR )
4726eleq2i 2182 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4847biimpi 119 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  Z  ->  k  e.  ( ZZ>= `  M )
)
4948adantl 273 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( ZZ>= `  M )
)
50 eluzle 9290 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  <_  k )
5149, 50syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  M  <_  k )
5244, 45, 46, 51leadd1dd 8284 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  ( M  +  K )  <_  ( k  +  K
) )
5342zcnd 9128 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  CC )
5438zcnd 9128 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  CC )
5553, 54addcomd 7877 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  +  K )  =  ( K  +  k ) )
5652, 55breqtrd 3922 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  Z )  ->  ( M  +  K )  <_  ( K  +  k ) )
57 eluz2 9284 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  +  k )  e.  ( ZZ>= `  ( M  +  K )
)  <->  ( ( M  +  K )  e.  ZZ  /\  ( K  +  k )  e.  ZZ  /\  ( M  +  K )  <_ 
( K  +  k ) ) )
5839, 43, 56, 57syl3anbrc 1148 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  ( ZZ>= `  ( M  +  K ) ) )
5958, 4syl6eleqr 2209 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  W )
6035, 36, 59rspcdva 2766 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
6133, 60fvmpt2d 5473 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  B )
62 eqidd 2116 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  (
j  e.  W  |->  A )  =  ( j  e.  W  |->  A ) )
6334adantl 273 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  Z )  /\  j  =  ( K  +  k ) )  ->  A  =  B )
6462, 63, 59, 60fvmptd 5468 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  B )
6561, 64eqtr4d 2151 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  k ) ) )
6665ralrimiva 2480 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
) )
67 nffvmpt1 5398 . . . . . . . . . . . . . . . 16  |-  F/_ k
( ( k  e.  Z  |->  B ) `  n )
6867nfeq1 2266 . . . . . . . . . . . . . . 15  |-  F/ k ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)
69 fveq2 5387 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
70 oveq2 5748 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  ( K  +  k )  =  ( K  +  n ) )
7170fveq2d 5391 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
7269, 71eqeq12d 2130 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  (
( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  <->  ( ( k  e.  Z  |->  B ) `
 n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n
) ) ) )
7368, 72rspc 2755 . . . . . . . . . . . . . 14  |-  ( n  e.  Z  ->  ( A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  ->  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) ) )
7466, 73mpan9 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
7574ralrimiva 2480 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
) )
7675adantr 272 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  A. n  e.  Z  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) )
771adantr 272 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  M  e.  ZZ )
782adantr 272 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  K  e.  ZZ )
79 simpr 109 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  W )
8079, 4syl6eleq 2208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
81 eluzsub 9307 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( m  -  K )  e.  (
ZZ>= `  M ) )
8277, 78, 80, 81syl3anc 1199 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  ( ZZ>= `  M
) )
8382, 26syl6eleqr 2209 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  Z )
84 fveq2 5387 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
85 oveq2 5748 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  -  K )  ->  ( K  +  n )  =  ( K  +  ( m  -  K
) ) )
8685fveq2d 5391 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
8784, 86eqeq12d 2130 . . . . . . . . . . . 12  |-  ( n  =  ( m  -  K )  ->  (
( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  <->  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  (
m  -  K ) ) ) ) )
8887rspccva 2760 . . . . . . . . . . 11  |-  ( ( A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  /\  ( m  -  K )  e.  Z
)  ->  ( (
k  e.  Z  |->  B ) `  ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  ( m  -  K
) ) ) )
8976, 83, 88syl2anc 406 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( k  e.  Z  |->  B ) `  (
m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
90 pncan3 7934 . . . . . . . . . . . 12  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( K  +  ( m  -  K ) )  =  m )
9122, 24, 90syl2an 285 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  ( K  +  ( m  -  K ) )  =  m )
9291fveq2d 5391 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) )  =  ( ( j  e.  W  |->  A ) `
 m ) )
9332, 89, 923eqtrrd 2153 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( ( k  e.  Z  |->  B )  shift  K ) `
 m ) )
9421, 93sylan2br 284 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( ( j  e.  W  |->  A ) `
 m )  =  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
) )
95 addcl 7709 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
9695adantl 273 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
973, 20, 94, 96seq3feq 10196 . . . . . . 7  |-  ( ph  ->  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  =  seq ( M  +  K ) (  +  ,  ( ( k  e.  Z  |->  B )  shift  K )
) )
9897breq1d 3907 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
9930a1i 9 . . . . . . 7  |-  ( ph  ->  ( k  e.  Z  |->  B )  e.  _V )
10026eleq2i 2182 . . . . . . . . . . 11  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
101100biimpri 132 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  Z )
102101adantl 273 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  Z )
10360ralrimiva 2480 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  Z  B  e.  CC )
104103adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  Z  B  e.  CC )
105 nfcsb1v 3003 . . . . . . . . . . . 12  |-  F/_ k [_ x  /  k ]_ B
106105nfel1 2267 . . . . . . . . . . 11  |-  F/ k
[_ x  /  k ]_ B  e.  CC
107 csbeq1a 2981 . . . . . . . . . . . 12  |-  ( k  =  x  ->  B  =  [_ x  /  k ]_ B )
108107eleq1d 2184 . . . . . . . . . . 11  |-  ( k  =  x  ->  ( B  e.  CC  <->  [_ x  / 
k ]_ B  e.  CC ) )
109106, 108rspc 2755 . . . . . . . . . 10  |-  ( x  e.  Z  ->  ( A. k  e.  Z  B  e.  CC  ->  [_ x  /  k ]_ B  e.  CC )
)
110102, 104, 109sylc 62 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  [_ x  / 
k ]_ B  e.  CC )
111 eqid 2115 . . . . . . . . . 10  |-  ( k  e.  Z  |->  B )  =  ( k  e.  Z  |->  B )
112111fvmpts 5465 . . . . . . . . 9  |-  ( ( x  e.  Z  /\  [_ x  /  k ]_ B  e.  CC )  ->  ( ( k  e.  Z  |->  B ) `  x )  =  [_ x  /  k ]_ B
)
113102, 110, 112syl2anc 406 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  Z  |->  B ) `  x )  =  [_ x  / 
k ]_ B )
114113, 110eqeltrd 2192 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  Z  |->  B ) `  x )  e.  CC )
11599, 1, 2, 114, 96iser3shft 11066 . . . . . 6  |-  ( ph  ->  (  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
11698, 115bitr4d 190 . . . . 5  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x ) )
117116iotabidv 5077 . . . 4  |-  ( ph  ->  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x ) )
118 df-fv 5099 . . . 4  |-  (  ~~>  `  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) ) )  =  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )
119 df-fv 5099 . . . 4  |-  (  ~~>  `  seq M (  +  , 
( k  e.  Z  |->  B ) ) )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x )
120117, 118, 1193eqtr4g 2173 . . 3  |-  ( ph  ->  (  ~~>  `  seq ( M  +  K )
(  +  ,  ( j  e.  W  |->  A ) ) )  =  (  ~~>  `  seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
121 eqidd 2116 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( j  e.  W  |->  A ) `  m ) )
1228fmpttd 5541 . . . . 5  |-  ( ph  ->  ( j  e.  W  |->  A ) : W --> CC )
123122ffvelrnda 5521 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  e.  CC )
1244, 3, 121, 123isum 11105 . . 3  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  (  ~~>  `
 seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) ) ) )
125 eqidd 2116 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
126122adantr 272 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  (
j  e.  W  |->  A ) : W --> CC )
127 eluzelcn 9289 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  CC )
128127, 26eleq2s 2210 . . . . . . . . . . 11  |-  ( k  e.  Z  ->  k  e.  CC )
129 addcom 7863 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
13022, 128, 129syl2an 285 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  =  ( k  +  K ) )
131 id 19 . . . . . . . . . . . 12  |-  ( k  e.  Z  ->  k  e.  Z )
132131, 26syl6eleq 2208 . . . . . . . . . . 11  |-  ( k  e.  Z  ->  k  e.  ( ZZ>= `  M )
)
133 eluzadd 9306 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
134132, 2, 133syl2anr 286 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
135130, 134eqeltrd 2192 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  ( ZZ>= `  ( M  +  K ) ) )
136135, 4syl6eleqr 2209 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  W )
137136ralrimiva 2480 . . . . . . 7  |-  ( ph  ->  A. k  e.  Z  ( K  +  k
)  e.  W )
13870eleq1d 2184 . . . . . . . 8  |-  ( k  =  n  ->  (
( K  +  k )  e.  W  <->  ( K  +  n )  e.  W
) )
139138rspccva 2760 . . . . . . 7  |-  ( ( A. k  e.  Z  ( K  +  k
)  e.  W  /\  n  e.  Z )  ->  ( K  +  n
)  e.  W )
140137, 139sylan 279 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( K  +  n )  e.  W )
141126, 140ffvelrnd 5522 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  e.  CC )
14274, 141eqeltrd 2192 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  e.  CC )
14326, 1, 125, 142isum 11105 . . 3  |-  ( ph  -> 
sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
144120, 124, 1433eqtr4d 2158 . 2  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n ) )
145 sumfct 11094 . . 3  |-  ( A. j  e.  W  A  e.  CC  ->  sum_ m  e.  W  ( ( j  e.  W  |->  A ) `
 m )  = 
sum_ j  e.  W  A )
1469, 145syl 14 . 2  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  sum_ j  e.  W  A
)
147 sumfct 11094 . . 3  |-  ( A. k  e.  Z  B  e.  CC  ->  sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `
 n )  = 
sum_ k  e.  Z  B )
148103, 147syl 14 . 2  |-  ( ph  -> 
sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  sum_ k  e.  Z  B
)
149144, 146, 1483eqtr3d 2156 1  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   A.wral 2391   _Vcvv 2658   [_csb 2973   class class class wbr 3897    |-> cmpt 3957   iotacio 5054   -->wf 5087   ` cfv 5091  (class class class)co 5740   CCcc 7582    + caddc 7587    <_ cle 7765    - cmin 7897   ZZcz 9008   ZZ>=cuz 9278    seqcseq 10169    shift cshi 10537    ~~> cli 10998   sum_csu 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-frec 6254  df-1o 6279  df-oadd 6283  df-er 6395  df-en 6601  df-dom 6602  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-fz 9742  df-fzo 9871  df-seqfrec 10170  df-exp 10244  df-ihash 10473  df-shft 10538  df-cj 10565  df-rsqrt 10721  df-abs 10722  df-clim 10999  df-sumdc 11074
This theorem is referenced by:  eftlub  11306
  Copyright terms: Public domain W3C validator