ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumshft Unicode version

Theorem isumshft 11493
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1  |-  Z  =  ( ZZ>= `  M )
isumshft.2  |-  W  =  ( ZZ>= `  ( M  +  K ) )
isumshft.3  |-  ( j  =  ( K  +  k )  ->  A  =  B )
isumshft.4  |-  ( ph  ->  K  e.  ZZ )
isumshft.5  |-  ( ph  ->  M  e.  ZZ )
isumshft.6  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
Assertion
Ref Expression
isumshft  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    j,
k, K    ph, j, k   
j, W, k    B, j    j, Z, k
Allowed substitution hints:    A( j)    B( k)    M( j, k)

Proof of Theorem isumshft
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2 isumshft.4 . . . . . . . . 9  |-  ( ph  ->  K  e.  ZZ )
31, 2zaddcld 9377 . . . . . . . 8  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
4 isumshft.2 . . . . . . . . . . . . 13  |-  W  =  ( ZZ>= `  ( M  +  K ) )
54eleq2i 2244 . . . . . . . . . . . 12  |-  ( x  e.  W  <->  x  e.  ( ZZ>= `  ( M  +  K ) ) )
65biimpri 133 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  ( M  +  K )
)  ->  x  e.  W )
76adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  x  e.  W
)
8 isumshft.6 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
98ralrimiva 2550 . . . . . . . . . . . 12  |-  ( ph  ->  A. j  e.  W  A  e.  CC )
109adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  A. j  e.  W  A  e.  CC )
11 nfcsb1v 3090 . . . . . . . . . . . . 13  |-  F/_ j [_ x  /  j ]_ A
1211nfel1 2330 . . . . . . . . . . . 12  |-  F/ j
[_ x  /  j ]_ A  e.  CC
13 csbeq1a 3066 . . . . . . . . . . . . 13  |-  ( j  =  x  ->  A  =  [_ x  /  j ]_ A )
1413eleq1d 2246 . . . . . . . . . . . 12  |-  ( j  =  x  ->  ( A  e.  CC  <->  [_ x  / 
j ]_ A  e.  CC ) )
1512, 14rspc 2835 . . . . . . . . . . 11  |-  ( x  e.  W  ->  ( A. j  e.  W  A  e.  CC  ->  [_ x  /  j ]_ A  e.  CC )
)
167, 10, 15sylc 62 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  [_ x  /  j ]_ A  e.  CC )
17 eqid 2177 . . . . . . . . . . 11  |-  ( j  e.  W  |->  A )  =  ( j  e.  W  |->  A )
1817fvmpts 5594 . . . . . . . . . 10  |-  ( ( x  e.  W  /\  [_ x  /  j ]_ A  e.  CC )  ->  ( ( j  e.  W  |->  A ) `  x )  =  [_ x  /  j ]_ A
)
197, 16, 18syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( ( j  e.  W  |->  A ) `
 x )  = 
[_ x  /  j ]_ A )
2019, 16eqeltrd 2254 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( ( j  e.  W  |->  A ) `
 x )  e.  CC )
214eleq2i 2244 . . . . . . . . 9  |-  ( m  e.  W  <->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
222zcnd 9374 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  CC )
23 eluzelcn 9537 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  ( M  +  K )
)  ->  m  e.  CC )
2423, 4eleq2s 2272 . . . . . . . . . . 11  |-  ( m  e.  W  ->  m  e.  CC )
25 zex 9260 . . . . . . . . . . . . . 14  |-  ZZ  e.  _V
26 isumshft.1 . . . . . . . . . . . . . . 15  |-  Z  =  ( ZZ>= `  M )
27 uzssz 9545 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  M )  C_  ZZ
2826, 27eqsstri 3187 . . . . . . . . . . . . . 14  |-  Z  C_  ZZ
2925, 28ssexi 4141 . . . . . . . . . . . . 13  |-  Z  e. 
_V
3029mptex 5742 . . . . . . . . . . . 12  |-  ( k  e.  Z  |->  B )  e.  _V
3130shftval 10829 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
3222, 24, 31syl2an 289 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( ( k  e.  Z  |->  B )  shift  K ) `  m )  =  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) ) )
33 eqidd 2178 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  e.  Z  |->  B )  =  ( k  e.  Z  |->  B ) )
34 isumshft.3 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  ( K  +  k )  ->  A  =  B )
3534eleq1d 2246 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( K  +  k )  ->  ( A  e.  CC  <->  B  e.  CC ) )
369adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  Z )  ->  A. j  e.  W  A  e.  CC )
371adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  M  e.  ZZ )
382adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  ZZ )
3937, 38zaddcld 9377 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  Z )  ->  ( M  +  K )  e.  ZZ )
40 eluzelz 9535 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
4140, 26eleq2s 2272 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  Z  ->  k  e.  ZZ )
4241adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ZZ )
4338, 42zaddcld 9377 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  ZZ )
4437zred 9373 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  M  e.  RR )
4542zred 9373 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  RR )
4638zred 9373 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  RR )
4726eleq2i 2244 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4847biimpi 120 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  Z  ->  k  e.  ( ZZ>= `  M )
)
4948adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( ZZ>= `  M )
)
50 eluzle 9538 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  <_  k )
5149, 50syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  M  <_  k )
5244, 45, 46, 51leadd1dd 8514 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  ( M  +  K )  <_  ( k  +  K
) )
5342zcnd 9374 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  CC )
5438zcnd 9374 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  CC )
5553, 54addcomd 8106 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  +  K )  =  ( K  +  k ) )
5652, 55breqtrd 4029 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  Z )  ->  ( M  +  K )  <_  ( K  +  k ) )
57 eluz2 9532 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  +  k )  e.  ( ZZ>= `  ( M  +  K )
)  <->  ( ( M  +  K )  e.  ZZ  /\  ( K  +  k )  e.  ZZ  /\  ( M  +  K )  <_ 
( K  +  k ) ) )
5839, 43, 56, 57syl3anbrc 1181 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  ( ZZ>= `  ( M  +  K ) ) )
5958, 4eleqtrrdi 2271 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  W )
6035, 36, 59rspcdva 2846 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
6133, 60fvmpt2d 5602 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  B )
62 eqidd 2178 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  (
j  e.  W  |->  A )  =  ( j  e.  W  |->  A ) )
6334adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  Z )  /\  j  =  ( K  +  k ) )  ->  A  =  B )
6462, 63, 59, 60fvmptd 5597 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  B )
6561, 64eqtr4d 2213 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  k ) ) )
6665ralrimiva 2550 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
) )
67 nffvmpt1 5526 . . . . . . . . . . . . . . . 16  |-  F/_ k
( ( k  e.  Z  |->  B ) `  n )
6867nfeq1 2329 . . . . . . . . . . . . . . 15  |-  F/ k ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)
69 fveq2 5515 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
70 oveq2 5882 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  ( K  +  k )  =  ( K  +  n ) )
7170fveq2d 5519 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
7269, 71eqeq12d 2192 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  (
( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  <->  ( ( k  e.  Z  |->  B ) `
 n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n
) ) ) )
7368, 72rspc 2835 . . . . . . . . . . . . . 14  |-  ( n  e.  Z  ->  ( A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  ->  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) ) )
7466, 73mpan9 281 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
7574ralrimiva 2550 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
) )
7675adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  A. n  e.  Z  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) )
771adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  M  e.  ZZ )
782adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  K  e.  ZZ )
79 simpr 110 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  W )
8079, 4eleqtrdi 2270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
81 eluzsub 9555 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( m  -  K )  e.  (
ZZ>= `  M ) )
8277, 78, 80, 81syl3anc 1238 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  ( ZZ>= `  M
) )
8382, 26eleqtrrdi 2271 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  Z )
84 fveq2 5515 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
85 oveq2 5882 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  -  K )  ->  ( K  +  n )  =  ( K  +  ( m  -  K
) ) )
8685fveq2d 5519 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
8784, 86eqeq12d 2192 . . . . . . . . . . . 12  |-  ( n  =  ( m  -  K )  ->  (
( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  <->  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  (
m  -  K ) ) ) ) )
8887rspccva 2840 . . . . . . . . . . 11  |-  ( ( A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  /\  ( m  -  K )  e.  Z
)  ->  ( (
k  e.  Z  |->  B ) `  ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  ( m  -  K
) ) ) )
8976, 83, 88syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( k  e.  Z  |->  B ) `  (
m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
90 pncan3 8163 . . . . . . . . . . . 12  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( K  +  ( m  -  K ) )  =  m )
9122, 24, 90syl2an 289 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  ( K  +  ( m  -  K ) )  =  m )
9291fveq2d 5519 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) )  =  ( ( j  e.  W  |->  A ) `
 m ) )
9332, 89, 923eqtrrd 2215 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( ( k  e.  Z  |->  B )  shift  K ) `
 m ) )
9421, 93sylan2br 288 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( ( j  e.  W  |->  A ) `
 m )  =  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
) )
95 addcl 7935 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
9695adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
973, 20, 94, 96seq3feq 10469 . . . . . . 7  |-  ( ph  ->  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  =  seq ( M  +  K ) (  +  ,  ( ( k  e.  Z  |->  B )  shift  K )
) )
9897breq1d 4013 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
9930a1i 9 . . . . . . 7  |-  ( ph  ->  ( k  e.  Z  |->  B )  e.  _V )
10026eleq2i 2244 . . . . . . . . . . 11  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
101100biimpri 133 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  Z )
102101adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  Z )
10360ralrimiva 2550 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  Z  B  e.  CC )
104103adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  Z  B  e.  CC )
105 nfcsb1v 3090 . . . . . . . . . . . 12  |-  F/_ k [_ x  /  k ]_ B
106105nfel1 2330 . . . . . . . . . . 11  |-  F/ k
[_ x  /  k ]_ B  e.  CC
107 csbeq1a 3066 . . . . . . . . . . . 12  |-  ( k  =  x  ->  B  =  [_ x  /  k ]_ B )
108107eleq1d 2246 . . . . . . . . . . 11  |-  ( k  =  x  ->  ( B  e.  CC  <->  [_ x  / 
k ]_ B  e.  CC ) )
109106, 108rspc 2835 . . . . . . . . . 10  |-  ( x  e.  Z  ->  ( A. k  e.  Z  B  e.  CC  ->  [_ x  /  k ]_ B  e.  CC )
)
110102, 104, 109sylc 62 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  [_ x  / 
k ]_ B  e.  CC )
111 eqid 2177 . . . . . . . . . 10  |-  ( k  e.  Z  |->  B )  =  ( k  e.  Z  |->  B )
112111fvmpts 5594 . . . . . . . . 9  |-  ( ( x  e.  Z  /\  [_ x  /  k ]_ B  e.  CC )  ->  ( ( k  e.  Z  |->  B ) `  x )  =  [_ x  /  k ]_ B
)
113102, 110, 112syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  Z  |->  B ) `  x )  =  [_ x  / 
k ]_ B )
114113, 110eqeltrd 2254 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  Z  |->  B ) `  x )  e.  CC )
11599, 1, 2, 114, 96iser3shft 11349 . . . . . 6  |-  ( ph  ->  (  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
11698, 115bitr4d 191 . . . . 5  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x ) )
117116iotabidv 5199 . . . 4  |-  ( ph  ->  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x ) )
118 df-fv 5224 . . . 4  |-  (  ~~>  `  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) ) )  =  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )
119 df-fv 5224 . . . 4  |-  (  ~~>  `  seq M (  +  , 
( k  e.  Z  |->  B ) ) )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x )
120117, 118, 1193eqtr4g 2235 . . 3  |-  ( ph  ->  (  ~~>  `  seq ( M  +  K )
(  +  ,  ( j  e.  W  |->  A ) ) )  =  (  ~~>  `  seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
121 eqidd 2178 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( j  e.  W  |->  A ) `  m ) )
1228fmpttd 5671 . . . . 5  |-  ( ph  ->  ( j  e.  W  |->  A ) : W --> CC )
123122ffvelcdmda 5651 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  e.  CC )
1244, 3, 121, 123isum 11388 . . 3  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  (  ~~>  `
 seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) ) ) )
125 eqidd 2178 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
126122adantr 276 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  (
j  e.  W  |->  A ) : W --> CC )
127 eluzelcn 9537 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  CC )
128127, 26eleq2s 2272 . . . . . . . . . . 11  |-  ( k  e.  Z  ->  k  e.  CC )
129 addcom 8092 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
13022, 128, 129syl2an 289 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  =  ( k  +  K ) )
131 id 19 . . . . . . . . . . . 12  |-  ( k  e.  Z  ->  k  e.  Z )
132131, 26eleqtrdi 2270 . . . . . . . . . . 11  |-  ( k  e.  Z  ->  k  e.  ( ZZ>= `  M )
)
133 eluzadd 9554 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
134132, 2, 133syl2anr 290 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
135130, 134eqeltrd 2254 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  ( ZZ>= `  ( M  +  K ) ) )
136135, 4eleqtrrdi 2271 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  W )
137136ralrimiva 2550 . . . . . . 7  |-  ( ph  ->  A. k  e.  Z  ( K  +  k
)  e.  W )
13870eleq1d 2246 . . . . . . . 8  |-  ( k  =  n  ->  (
( K  +  k )  e.  W  <->  ( K  +  n )  e.  W
) )
139138rspccva 2840 . . . . . . 7  |-  ( ( A. k  e.  Z  ( K  +  k
)  e.  W  /\  n  e.  Z )  ->  ( K  +  n
)  e.  W )
140137, 139sylan 283 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( K  +  n )  e.  W )
141126, 140ffvelcdmd 5652 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  e.  CC )
14274, 141eqeltrd 2254 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  e.  CC )
14326, 1, 125, 142isum 11388 . . 3  |-  ( ph  -> 
sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
144120, 124, 1433eqtr4d 2220 . 2  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n ) )
145 sumfct 11377 . . 3  |-  ( A. j  e.  W  A  e.  CC  ->  sum_ m  e.  W  ( ( j  e.  W  |->  A ) `
 m )  = 
sum_ j  e.  W  A )
1469, 145syl 14 . 2  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  sum_ j  e.  W  A
)
147 sumfct 11377 . . 3  |-  ( A. k  e.  Z  B  e.  CC  ->  sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `
 n )  = 
sum_ k  e.  Z  B )
148103, 147syl 14 . 2  |-  ( ph  -> 
sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  sum_ k  e.  Z  B
)
149144, 146, 1483eqtr3d 2218 1  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2737   [_csb 3057   class class class wbr 4003    |-> cmpt 4064   iotacio 5176   -->wf 5212   ` cfv 5216  (class class class)co 5874   CCcc 7808    + caddc 7813    <_ cle 7991    - cmin 8126   ZZcz 9251   ZZ>=cuz 9526    seqcseq 10442    shift cshi 10818    ~~> cli 11281   sum_csu 11356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-frec 6391  df-1o 6416  df-oadd 6420  df-er 6534  df-en 6740  df-dom 6741  df-fin 6742  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-n0 9175  df-z 9252  df-uz 9527  df-q 9618  df-rp 9652  df-fz 10007  df-fzo 10140  df-seqfrec 10443  df-exp 10517  df-ihash 10751  df-shft 10819  df-cj 10846  df-rsqrt 11002  df-abs 11003  df-clim 11282  df-sumdc 11357
This theorem is referenced by:  eftlub  11693
  Copyright terms: Public domain W3C validator