ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2or2 GIF version

Theorem nntri2or2 6597
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
nntri2or2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))

Proof of Theorem nntri2or2
StepHypRef Expression
1 nnon 4666 . . . . . 6 (𝐵 ∈ ω → 𝐵 ∈ On)
21adantl 277 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ On)
3 onelss 4442 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
42, 3syl 14 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
54imp 124 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
65orcd 735 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐴))
7 eqimss 3251 . . . 4 (𝐴 = 𝐵𝐴𝐵)
87adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴𝐵)
98orcd 735 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴𝐵𝐵𝐴))
10 nnon 4666 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
1110adantr 276 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ On)
12 onelss 4442 . . . . 5 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
1311, 12syl 14 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴𝐵𝐴))
1413imp 124 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → 𝐵𝐴)
1514olcd 736 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝐴𝐵𝐵𝐴))
16 nntri3or 6592 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
176, 9, 15, 16mpjao3dan 1320 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wcel 2177  wss 3170  Oncon0 4418  ωcom 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-int 3892  df-tr 4151  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647
This theorem is referenced by:  fientri3  7027
  Copyright terms: Public domain W3C validator