| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntri2or2 | GIF version | ||
| Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.) |
| Ref | Expression |
|---|---|
| nntri2or2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 4647 | . . . . . 6 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
| 2 | 1 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ On) |
| 3 | onelss 4423 | . . . . 5 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 5 | 4 | imp 124 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) |
| 6 | 5 | orcd 734 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 7 | eqimss 3238 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 8 | 7 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵) |
| 9 | 8 | orcd 734 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 10 | nnon 4647 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ On) |
| 12 | onelss 4423 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 13 | 11, 12 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 14 | 13 | imp 124 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 15 | 14 | olcd 735 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ∈ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 16 | nntri3or 6560 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 17 | 6, 9, 15, 16 | mpjao3dan 1318 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 Oncon0 4399 ωcom 4627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: fientri3 6985 |
| Copyright terms: Public domain | W3C validator |