Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nntri2or2 | GIF version |
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.) |
Ref | Expression |
---|---|
nntri2or2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4587 | . . . . . 6 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
2 | 1 | adantl 275 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ On) |
3 | onelss 4365 | . . . . 5 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
5 | 4 | imp 123 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) |
6 | 5 | orcd 723 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
7 | eqimss 3196 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
8 | 7 | adantl 275 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵) |
9 | 8 | orcd 723 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
10 | nnon 4587 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
11 | 10 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ On) |
12 | onelss 4365 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
13 | 11, 12 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
14 | 13 | imp 123 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
15 | 14 | olcd 724 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ∈ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
16 | nntri3or 6461 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
17 | 6, 9, 15, 16 | mpjao3dan 1297 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 Oncon0 4341 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: fientri3 6880 |
Copyright terms: Public domain | W3C validator |