ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2or2 GIF version

Theorem nntri2or2 6642
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
nntri2or2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))

Proof of Theorem nntri2or2
StepHypRef Expression
1 nnon 4701 . . . . . 6 (𝐵 ∈ ω → 𝐵 ∈ On)
21adantl 277 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ On)
3 onelss 4477 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
42, 3syl 14 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
54imp 124 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
65orcd 738 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐴))
7 eqimss 3278 . . . 4 (𝐴 = 𝐵𝐴𝐵)
87adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴𝐵)
98orcd 738 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴𝐵𝐵𝐴))
10 nnon 4701 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
1110adantr 276 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ On)
12 onelss 4477 . . . . 5 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
1311, 12syl 14 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴𝐵𝐴))
1413imp 124 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → 𝐵𝐴)
1514olcd 739 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝐴𝐵𝐵𝐴))
16 nntri3or 6637 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
176, 9, 15, 16mpjao3dan 1341 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  wss 3197  Oncon0 4453  ωcom 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682
This theorem is referenced by:  fientri3  7073
  Copyright terms: Public domain W3C validator