ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2or2 GIF version

Theorem nntri2or2 6394
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
nntri2or2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))

Proof of Theorem nntri2or2
StepHypRef Expression
1 nnon 4523 . . . . . 6 (𝐵 ∈ ω → 𝐵 ∈ On)
21adantl 275 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ On)
3 onelss 4309 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
42, 3syl 14 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
54imp 123 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
65orcd 722 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐴))
7 eqimss 3151 . . . 4 (𝐴 = 𝐵𝐴𝐵)
87adantl 275 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴𝐵)
98orcd 722 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴𝐵𝐵𝐴))
10 nnon 4523 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
1110adantr 274 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ On)
12 onelss 4309 . . . . 5 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
1311, 12syl 14 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴𝐵𝐴))
1413imp 123 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → 𝐵𝐴)
1514olcd 723 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝐴𝐵𝐵𝐴))
16 nntri3or 6389 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
176, 9, 15, 16mpjao3dan 1285 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 697   = wceq 1331  wcel 1480  wss 3071  Oncon0 4285  ωcom 4504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-uni 3737  df-int 3772  df-tr 4027  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505
This theorem is referenced by:  fientri3  6803
  Copyright terms: Public domain W3C validator