![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nntri2or2 | GIF version |
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.) |
Ref | Expression |
---|---|
nntri2or2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4386 | . . . . . 6 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
2 | 1 | adantl 271 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ On) |
3 | onelss 4177 | . . . . 5 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
5 | 4 | imp 122 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) |
6 | 5 | orcd 685 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
7 | eqimss 3062 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
8 | 7 | adantl 271 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵) |
9 | 8 | orcd 685 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
10 | nnon 4386 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
11 | 10 | adantr 270 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ On) |
12 | onelss 4177 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
13 | 11, 12 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
14 | 13 | imp 122 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
15 | 14 | olcd 686 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ∈ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
16 | nntri3or 6184 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
17 | 6, 9, 15, 16 | mpjao3dan 1239 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∨ wo 662 = wceq 1285 ∈ wcel 1434 ⊆ wss 2984 Oncon0 4153 ωcom 4367 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-iinf 4365 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2614 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-uni 3628 df-int 3663 df-tr 3902 df-iord 4156 df-on 4158 df-suc 4161 df-iom 4368 |
This theorem is referenced by: fientri3 6550 |
Copyright terms: Public domain | W3C validator |