ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucb GIF version

Theorem onsucb 4594
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4592. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
onsucb (𝐴 ∈ On ↔ suc 𝐴 ∈ On)

Proof of Theorem onsucb
StepHypRef Expression
1 onsuc 4592 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eloni 4465 . . 3 (suc 𝐴 ∈ On → Ord suc 𝐴)
3 elex 2811 . . . . 5 (suc 𝐴 ∈ On → suc 𝐴 ∈ V)
4 sucexb 4588 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
53, 4sylibr 134 . . . 4 (suc 𝐴 ∈ On → 𝐴 ∈ V)
6 elong 4463 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
7 ordsucg 4593 . . . . 5 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
86, 7bitrd 188 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴))
95, 8syl 14 . . 3 (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴))
102, 9mpbird 167 . 2 (suc 𝐴 ∈ On → 𝐴 ∈ On)
111, 10impbii 126 1 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  Vcvv 2799  Ord word 4452  Oncon0 4453  suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461
This theorem is referenced by:  onsucmin  4598  onsucuni2  4655
  Copyright terms: Public domain W3C validator