ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucb GIF version

Theorem onsucb 4559
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4557. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
onsucb (𝐴 ∈ On ↔ suc 𝐴 ∈ On)

Proof of Theorem onsucb
StepHypRef Expression
1 onsuc 4557 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eloni 4430 . . 3 (suc 𝐴 ∈ On → Ord suc 𝐴)
3 elex 2785 . . . . 5 (suc 𝐴 ∈ On → suc 𝐴 ∈ V)
4 sucexb 4553 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
53, 4sylibr 134 . . . 4 (suc 𝐴 ∈ On → 𝐴 ∈ V)
6 elong 4428 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
7 ordsucg 4558 . . . . 5 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
86, 7bitrd 188 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴))
95, 8syl 14 . . 3 (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴))
102, 9mpbird 167 . 2 (suc 𝐴 ∈ On → 𝐴 ∈ On)
111, 10impbii 126 1 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2177  Vcvv 2773  Ord word 4417  Oncon0 4418  suc csuc 4420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-tr 4151  df-iord 4421  df-on 4423  df-suc 4426
This theorem is referenced by:  onsucmin  4563  onsucuni2  4620
  Copyright terms: Public domain W3C validator