| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucb | GIF version | ||
| Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4592. (Contributed by NM, 9-Sep-2003.) |
| Ref | Expression |
|---|---|
| onsucb | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsuc 4592 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 2 | eloni 4465 | . . 3 ⊢ (suc 𝐴 ∈ On → Ord suc 𝐴) | |
| 3 | elex 2811 | . . . . 5 ⊢ (suc 𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 4 | sucexb 4588 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 5 | 3, 4 | sylibr 134 | . . . 4 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ V) |
| 6 | elong 4463 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 7 | ordsucg 4593 | . . . . 5 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
| 8 | 6, 7 | bitrd 188 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
| 9 | 5, 8 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
| 10 | 2, 9 | mpbird 167 | . 2 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ On) |
| 11 | 1, 10 | impbii 126 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 Vcvv 2799 Ord word 4452 Oncon0 4453 suc csuc 4455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: onsucmin 4598 onsucuni2 4655 |
| Copyright terms: Public domain | W3C validator |