ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucb GIF version

Theorem onsucb 4539
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4537. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
onsucb (𝐴 ∈ On ↔ suc 𝐴 ∈ On)

Proof of Theorem onsucb
StepHypRef Expression
1 onsuc 4537 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eloni 4410 . . 3 (suc 𝐴 ∈ On → Ord suc 𝐴)
3 elex 2774 . . . . 5 (suc 𝐴 ∈ On → suc 𝐴 ∈ V)
4 sucexb 4533 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
53, 4sylibr 134 . . . 4 (suc 𝐴 ∈ On → 𝐴 ∈ V)
6 elong 4408 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
7 ordsucg 4538 . . . . 5 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
86, 7bitrd 188 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴))
95, 8syl 14 . . 3 (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴))
102, 9mpbird 167 . 2 (suc 𝐴 ∈ On → 𝐴 ∈ On)
111, 10impbii 126 1 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2167  Vcvv 2763  Ord word 4397  Oncon0 4398  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  onsucmin  4543  onsucuni2  4600
  Copyright terms: Public domain W3C validator