| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucb | GIF version | ||
| Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4557. (Contributed by NM, 9-Sep-2003.) |
| Ref | Expression |
|---|---|
| onsucb | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsuc 4557 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 2 | eloni 4430 | . . 3 ⊢ (suc 𝐴 ∈ On → Ord suc 𝐴) | |
| 3 | elex 2785 | . . . . 5 ⊢ (suc 𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 4 | sucexb 4553 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 5 | 3, 4 | sylibr 134 | . . . 4 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ V) |
| 6 | elong 4428 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 7 | ordsucg 4558 | . . . . 5 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
| 8 | 6, 7 | bitrd 188 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
| 9 | 5, 8 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
| 10 | 2, 9 | mpbird 167 | . 2 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ On) |
| 11 | 1, 10 | impbii 126 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 Vcvv 2773 Ord word 4417 Oncon0 4418 suc csuc 4420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 |
| This theorem is referenced by: onsucmin 4563 onsucuni2 4620 |
| Copyright terms: Public domain | W3C validator |