ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelcnv Unicode version

Theorem opelcnv 4811
Description: Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1  |-  A  e. 
_V
opelcnv.2  |-  B  e. 
_V
Assertion
Ref Expression
opelcnv  |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )

Proof of Theorem opelcnv
StepHypRef Expression
1 opelcnv.1 . 2  |-  A  e. 
_V
2 opelcnv.2 . 2  |-  B  e. 
_V
3 opelcnvg 4809 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
41, 2, 3mp2an 426 1  |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2148   _Vcvv 2739   <.cop 3597   `'ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636
This theorem is referenced by:  cnvopab  5032  cnv0  5034  cnvdif  5037  dfrel2  5081  cnvcnvsn  5107  cnvresima  5120  dfco2  5130  cnviinm  5172  fcnvres  5401  dmtpos  6260  dftpos4  6267  tpostpos  6268  fisumcom2  11449  fprodcom2fi  11637
  Copyright terms: Public domain W3C validator