ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1olem Unicode version

Theorem cnvf1olem 6370
Description: Lemma for cnvf1o 6371. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 531 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  U. `' { B } )
2 1st2nd 6327 . . . . . . . 8  |-  ( ( Rel  A  /\  B  e.  A )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
32adantrr 479 . . . . . . 7  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B )
>. )
43sneqd 3679 . . . . . 6  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { B }  =  { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
54cnveqd 4898 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { B }  =  `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
65unieqd 3899 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { B }  =  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
7 1stexg 6313 . . . . . 6  |-  ( B  e.  A  ->  ( 1st `  B )  e. 
_V )
8 2ndexg 6314 . . . . . 6  |-  ( B  e.  A  ->  ( 2nd `  B )  e. 
_V )
9 opswapg 5215 . . . . . 6  |-  ( ( ( 1st `  B
)  e.  _V  /\  ( 2nd `  B )  e.  _V )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
107, 8, 9syl2anc 411 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
1110ad2antrl 490 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
121, 6, 113eqtrd 2266 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  <. ( 2nd `  B ) ,  ( 1st `  B )
>. )
13 simprl 529 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  e.  A )
143, 13eqeltrrd 2307 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
)
15 opelcnvg 4902 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
168, 7, 15syl2anc 411 . . . . 5  |-  ( B  e.  A  ->  ( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1716ad2antrl 490 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1814, 17mpbird 167 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A )
1912, 18eqeltrd 2306 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  e.  `' A
)
20 opswapg 5215 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
218, 7, 20syl2anc 411 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
2221eqcomd 2235 . . . 4  |-  ( B  e.  A  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2322ad2antrl 490 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2412sneqd 3679 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { C }  =  { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2524cnveqd 4898 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { C }  =  `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2625unieqd 3899 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { C }  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2723, 3, 263eqtr4d 2272 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  U. `' { C } )
2819, 27jca 306 1  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   U.cuni 3888   `'ccnv 4718   Rel wrel 4724   ` cfv 5318   1stc1st 6284   2ndc2nd 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6286  df-2nd 6287
This theorem is referenced by:  cnvf1o  6371
  Copyright terms: Public domain W3C validator