Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvf1olem | Unicode version |
Description: Lemma for cnvf1o 6193. (Contributed by Mario Carneiro, 27-Apr-2014.) |
Ref | Expression |
---|---|
cnvf1olem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 522 | . . . 4 | |
2 | 1st2nd 6149 | . . . . . . . 8 | |
3 | 2 | adantrr 471 | . . . . . . 7 |
4 | 3 | sneqd 3589 | . . . . . 6 |
5 | 4 | cnveqd 4780 | . . . . 5 |
6 | 5 | unieqd 3800 | . . . 4 |
7 | 1stexg 6135 | . . . . . 6 | |
8 | 2ndexg 6136 | . . . . . 6 | |
9 | opswapg 5090 | . . . . . 6 | |
10 | 7, 8, 9 | syl2anc 409 | . . . . 5 |
11 | 10 | ad2antrl 482 | . . . 4 |
12 | 1, 6, 11 | 3eqtrd 2202 | . . 3 |
13 | simprl 521 | . . . . 5 | |
14 | 3, 13 | eqeltrrd 2244 | . . . 4 |
15 | opelcnvg 4784 | . . . . . 6 | |
16 | 8, 7, 15 | syl2anc 409 | . . . . 5 |
17 | 16 | ad2antrl 482 | . . . 4 |
18 | 14, 17 | mpbird 166 | . . 3 |
19 | 12, 18 | eqeltrd 2243 | . 2 |
20 | opswapg 5090 | . . . . . 6 | |
21 | 8, 7, 20 | syl2anc 409 | . . . . 5 |
22 | 21 | eqcomd 2171 | . . . 4 |
23 | 22 | ad2antrl 482 | . . 3 |
24 | 12 | sneqd 3589 | . . . . 5 |
25 | 24 | cnveqd 4780 | . . . 4 |
26 | 25 | unieqd 3800 | . . 3 |
27 | 23, 3, 26 | 3eqtr4d 2208 | . 2 |
28 | 19, 27 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 csn 3576 cop 3579 cuni 3789 ccnv 4603 wrel 4609 cfv 5188 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: cnvf1o 6193 |
Copyright terms: Public domain | W3C validator |