ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1olem Unicode version

Theorem cnvf1olem 6192
Description: Lemma for cnvf1o 6193. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 522 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  U. `' { B } )
2 1st2nd 6149 . . . . . . . 8  |-  ( ( Rel  A  /\  B  e.  A )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
32adantrr 471 . . . . . . 7  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B )
>. )
43sneqd 3589 . . . . . 6  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { B }  =  { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
54cnveqd 4780 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { B }  =  `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
65unieqd 3800 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { B }  =  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
7 1stexg 6135 . . . . . 6  |-  ( B  e.  A  ->  ( 1st `  B )  e. 
_V )
8 2ndexg 6136 . . . . . 6  |-  ( B  e.  A  ->  ( 2nd `  B )  e. 
_V )
9 opswapg 5090 . . . . . 6  |-  ( ( ( 1st `  B
)  e.  _V  /\  ( 2nd `  B )  e.  _V )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
107, 8, 9syl2anc 409 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
1110ad2antrl 482 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
121, 6, 113eqtrd 2202 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  <. ( 2nd `  B ) ,  ( 1st `  B )
>. )
13 simprl 521 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  e.  A )
143, 13eqeltrrd 2244 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
)
15 opelcnvg 4784 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
168, 7, 15syl2anc 409 . . . . 5  |-  ( B  e.  A  ->  ( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1716ad2antrl 482 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1814, 17mpbird 166 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A )
1912, 18eqeltrd 2243 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  e.  `' A
)
20 opswapg 5090 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
218, 7, 20syl2anc 409 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
2221eqcomd 2171 . . . 4  |-  ( B  e.  A  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2322ad2antrl 482 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2412sneqd 3589 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { C }  =  { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2524cnveqd 4780 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { C }  =  `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2625unieqd 3800 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { C }  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2723, 3, 263eqtr4d 2208 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  U. `' { C } )
2819, 27jca 304 1  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   <.cop 3579   U.cuni 3789   `'ccnv 4603   Rel wrel 4609   ` cfv 5188   1stc1st 6106   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by:  cnvf1o  6193
  Copyright terms: Public domain W3C validator