ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1olem Unicode version

Theorem cnvf1olem 6279
Description: Lemma for cnvf1o 6280. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 531 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  U. `' { B } )
2 1st2nd 6236 . . . . . . . 8  |-  ( ( Rel  A  /\  B  e.  A )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
32adantrr 479 . . . . . . 7  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B )
>. )
43sneqd 3632 . . . . . 6  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { B }  =  { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
54cnveqd 4839 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { B }  =  `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
65unieqd 3847 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { B }  =  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
7 1stexg 6222 . . . . . 6  |-  ( B  e.  A  ->  ( 1st `  B )  e. 
_V )
8 2ndexg 6223 . . . . . 6  |-  ( B  e.  A  ->  ( 2nd `  B )  e. 
_V )
9 opswapg 5153 . . . . . 6  |-  ( ( ( 1st `  B
)  e.  _V  /\  ( 2nd `  B )  e.  _V )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
107, 8, 9syl2anc 411 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
1110ad2antrl 490 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
121, 6, 113eqtrd 2230 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  <. ( 2nd `  B ) ,  ( 1st `  B )
>. )
13 simprl 529 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  e.  A )
143, 13eqeltrrd 2271 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
)
15 opelcnvg 4843 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
168, 7, 15syl2anc 411 . . . . 5  |-  ( B  e.  A  ->  ( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1716ad2antrl 490 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1814, 17mpbird 167 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A )
1912, 18eqeltrd 2270 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  e.  `' A
)
20 opswapg 5153 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
218, 7, 20syl2anc 411 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
2221eqcomd 2199 . . . 4  |-  ( B  e.  A  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2322ad2antrl 490 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2412sneqd 3632 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { C }  =  { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2524cnveqd 4839 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { C }  =  `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2625unieqd 3847 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { C }  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2723, 3, 263eqtr4d 2236 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  U. `' { C } )
2819, 27jca 306 1  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3619   <.cop 3622   U.cuni 3836   `'ccnv 4659   Rel wrel 4665   ` cfv 5255   1stc1st 6193   2ndc2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6195  df-2nd 6196
This theorem is referenced by:  cnvf1o  6280
  Copyright terms: Public domain W3C validator