ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1olem Unicode version

Theorem cnvf1olem 6333
Description: Lemma for cnvf1o 6334. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 531 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  U. `' { B } )
2 1st2nd 6290 . . . . . . . 8  |-  ( ( Rel  A  /\  B  e.  A )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
32adantrr 479 . . . . . . 7  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B )
>. )
43sneqd 3656 . . . . . 6  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { B }  =  { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
54cnveqd 4872 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { B }  =  `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
65unieqd 3875 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { B }  =  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
7 1stexg 6276 . . . . . 6  |-  ( B  e.  A  ->  ( 1st `  B )  e. 
_V )
8 2ndexg 6277 . . . . . 6  |-  ( B  e.  A  ->  ( 2nd `  B )  e. 
_V )
9 opswapg 5188 . . . . . 6  |-  ( ( ( 1st `  B
)  e.  _V  /\  ( 2nd `  B )  e.  _V )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
107, 8, 9syl2anc 411 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
1110ad2antrl 490 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
121, 6, 113eqtrd 2244 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  <. ( 2nd `  B ) ,  ( 1st `  B )
>. )
13 simprl 529 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  e.  A )
143, 13eqeltrrd 2285 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
)
15 opelcnvg 4876 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
168, 7, 15syl2anc 411 . . . . 5  |-  ( B  e.  A  ->  ( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1716ad2antrl 490 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1814, 17mpbird 167 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A )
1912, 18eqeltrd 2284 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  e.  `' A
)
20 opswapg 5188 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
218, 7, 20syl2anc 411 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
2221eqcomd 2213 . . . 4  |-  ( B  e.  A  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2322ad2antrl 490 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2412sneqd 3656 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { C }  =  { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2524cnveqd 4872 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { C }  =  `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2625unieqd 3875 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { C }  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2723, 3, 263eqtr4d 2250 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  U. `' { C } )
2819, 27jca 306 1  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643   <.cop 3646   U.cuni 3864   `'ccnv 4692   Rel wrel 4698   ` cfv 5290   1stc1st 6247   2ndc2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-1st 6249  df-2nd 6250
This theorem is referenced by:  cnvf1o  6334
  Copyright terms: Public domain W3C validator