ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtposg Unicode version

Theorem brtposg 6258
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
Assertion
Ref Expression
brtposg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )

Proof of Theorem brtposg
StepHypRef Expression
1 opswapg 5117 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. `' { <. A ,  B >. }  =  <. B ,  A >. )
21breq1d 4015 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( U. `' { <. A ,  B >. } F C  <->  <. B ,  A >. F C ) )
323adant3 1017 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( U. `' { <. A ,  B >. } F C  <->  <. B ,  A >. F C ) )
43anbi2d 464 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { <. A ,  B >. } F C )  <-> 
( <. A ,  B >.  e.  ( `' dom  F  u.  { (/) } )  /\  <. B ,  A >. F C ) ) )
5 brtpos2 6255 . . 3  |-  ( C  e.  X  ->  ( <. A ,  B >.tpos  F C  <->  ( <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { <. A ,  B >. } F C ) ) )
653ad2ant3 1020 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B >.tpos  F C  <->  ( <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { <. A ,  B >. } F C ) ) )
7 opexg 4230 . . . . . . . . 9  |-  ( ( B  e.  W  /\  A  e.  V )  -> 
<. B ,  A >.  e. 
_V )
87ancoms 268 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. B ,  A >.  e. 
_V )
98anim1i 340 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  ( <. B ,  A >.  e. 
_V  /\  C  e.  X ) )
1093impa 1194 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >.  e.  _V  /\  C  e.  X ) )
11 breldmg 4835 . . . . . . 7  |-  ( (
<. B ,  A >.  e. 
_V  /\  C  e.  X  /\  <. B ,  A >. F C )  ->  <. B ,  A >.  e. 
dom  F )
12113expia 1205 . . . . . 6  |-  ( (
<. B ,  A >.  e. 
_V  /\  C  e.  X )  ->  ( <. B ,  A >. F C  ->  <. B ,  A >.  e.  dom  F
) )
1310, 12syl 14 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >. F C  ->  <. B ,  A >.  e.  dom  F
) )
14 opelcnvg 4809 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  `' dom  F  <->  <. B ,  A >.  e. 
dom  F ) )
15143adant3 1017 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B >.  e.  `' dom  F  <->  <. B ,  A >.  e. 
dom  F ) )
1613, 15sylibrd 169 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >. F C  ->  <. A ,  B >.  e.  `' dom  F ) )
17 elun1 3304 . . . 4  |-  ( <. A ,  B >.  e.  `' dom  F  ->  <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} ) )
1816, 17syl6 33 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >. F C  ->  <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} ) ) )
1918pm4.71rd 394 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >. F C  <->  ( <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} )  /\  <. B ,  A >. F C ) ) )
204, 6, 193bitr4d 220 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   _Vcvv 2739    u. cun 3129   (/)c0 3424   {csn 3594   <.cop 3597   U.cuni 3811   class class class wbr 4005   `'ccnv 4627   dom cdm 4628  tpos ctpos 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-tpos 6249
This theorem is referenced by:  ottposg  6259  dmtpos  6260  rntpos  6261  ovtposg  6263  dftpos3  6266  tpostpos  6268
  Copyright terms: Public domain W3C validator