Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brtposg | Unicode version |
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.) |
Ref | Expression |
---|---|
brtposg | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opswapg 5097 | . . . . 5 | |
2 | 1 | breq1d 3999 | . . . 4 |
3 | 2 | 3adant3 1012 | . . 3 |
4 | 3 | anbi2d 461 | . 2 |
5 | brtpos2 6230 | . . 3 tpos | |
6 | 5 | 3ad2ant3 1015 | . 2 tpos |
7 | opexg 4213 | . . . . . . . . 9 | |
8 | 7 | ancoms 266 | . . . . . . . 8 |
9 | 8 | anim1i 338 | . . . . . . 7 |
10 | 9 | 3impa 1189 | . . . . . 6 |
11 | breldmg 4817 | . . . . . . 7 | |
12 | 11 | 3expia 1200 | . . . . . 6 |
13 | 10, 12 | syl 14 | . . . . 5 |
14 | opelcnvg 4791 | . . . . . 6 | |
15 | 14 | 3adant3 1012 | . . . . 5 |
16 | 13, 15 | sylibrd 168 | . . . 4 |
17 | elun1 3294 | . . . 4 | |
18 | 16, 17 | syl6 33 | . . 3 |
19 | 18 | pm4.71rd 392 | . 2 |
20 | 4, 6, 19 | 3bitr4d 219 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wcel 2141 cvv 2730 cun 3119 c0 3414 csn 3583 cop 3586 cuni 3796 class class class wbr 3989 ccnv 4610 cdm 4611 tpos ctpos 6223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-tpos 6224 |
This theorem is referenced by: ottposg 6234 dmtpos 6235 rntpos 6236 ovtposg 6238 dftpos3 6241 tpostpos 6243 |
Copyright terms: Public domain | W3C validator |