Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brtposg | Unicode version |
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.) |
Ref | Expression |
---|---|
brtposg | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opswapg 5090 | . . . . 5 | |
2 | 1 | breq1d 3992 | . . . 4 |
3 | 2 | 3adant3 1007 | . . 3 |
4 | 3 | anbi2d 460 | . 2 |
5 | brtpos2 6219 | . . 3 tpos | |
6 | 5 | 3ad2ant3 1010 | . 2 tpos |
7 | opexg 4206 | . . . . . . . . 9 | |
8 | 7 | ancoms 266 | . . . . . . . 8 |
9 | 8 | anim1i 338 | . . . . . . 7 |
10 | 9 | 3impa 1184 | . . . . . 6 |
11 | breldmg 4810 | . . . . . . 7 | |
12 | 11 | 3expia 1195 | . . . . . 6 |
13 | 10, 12 | syl 14 | . . . . 5 |
14 | opelcnvg 4784 | . . . . . 6 | |
15 | 14 | 3adant3 1007 | . . . . 5 |
16 | 13, 15 | sylibrd 168 | . . . 4 |
17 | elun1 3289 | . . . 4 | |
18 | 16, 17 | syl6 33 | . . 3 |
19 | 18 | pm4.71rd 392 | . 2 |
20 | 4, 6, 19 | 3bitr4d 219 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 cvv 2726 cun 3114 c0 3409 csn 3576 cop 3579 cuni 3789 class class class wbr 3982 ccnv 4603 cdm 4604 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-tpos 6213 |
This theorem is referenced by: ottposg 6223 dmtpos 6224 rntpos 6225 ovtposg 6227 dftpos3 6230 tpostpos 6232 |
Copyright terms: Public domain | W3C validator |