ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtposg Unicode version

Theorem brtposg 6400
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
Assertion
Ref Expression
brtposg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )

Proof of Theorem brtposg
StepHypRef Expression
1 opswapg 5215 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. `' { <. A ,  B >. }  =  <. B ,  A >. )
21breq1d 4093 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( U. `' { <. A ,  B >. } F C  <->  <. B ,  A >. F C ) )
323adant3 1041 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( U. `' { <. A ,  B >. } F C  <->  <. B ,  A >. F C ) )
43anbi2d 464 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { <. A ,  B >. } F C )  <-> 
( <. A ,  B >.  e.  ( `' dom  F  u.  { (/) } )  /\  <. B ,  A >. F C ) ) )
5 brtpos2 6397 . . 3  |-  ( C  e.  X  ->  ( <. A ,  B >.tpos  F C  <->  ( <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { <. A ,  B >. } F C ) ) )
653ad2ant3 1044 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B >.tpos  F C  <->  ( <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { <. A ,  B >. } F C ) ) )
7 opexg 4314 . . . . . . . . 9  |-  ( ( B  e.  W  /\  A  e.  V )  -> 
<. B ,  A >.  e. 
_V )
87ancoms 268 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. B ,  A >.  e. 
_V )
98anim1i 340 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  ( <. B ,  A >.  e. 
_V  /\  C  e.  X ) )
1093impa 1218 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >.  e.  _V  /\  C  e.  X ) )
11 breldmg 4929 . . . . . . 7  |-  ( (
<. B ,  A >.  e. 
_V  /\  C  e.  X  /\  <. B ,  A >. F C )  ->  <. B ,  A >.  e. 
dom  F )
12113expia 1229 . . . . . 6  |-  ( (
<. B ,  A >.  e. 
_V  /\  C  e.  X )  ->  ( <. B ,  A >. F C  ->  <. B ,  A >.  e.  dom  F
) )
1310, 12syl 14 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >. F C  ->  <. B ,  A >.  e.  dom  F
) )
14 opelcnvg 4902 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  `' dom  F  <->  <. B ,  A >.  e. 
dom  F ) )
15143adant3 1041 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B >.  e.  `' dom  F  <->  <. B ,  A >.  e. 
dom  F ) )
1613, 15sylibrd 169 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >. F C  ->  <. A ,  B >.  e.  `' dom  F ) )
17 elun1 3371 . . . 4  |-  ( <. A ,  B >.  e.  `' dom  F  ->  <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} ) )
1816, 17syl6 33 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >. F C  ->  <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} ) ) )
1918pm4.71rd 394 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. B ,  A >. F C  <->  ( <. A ,  B >.  e.  ( `' dom  F  u.  { (/)
} )  /\  <. B ,  A >. F C ) ) )
204, 6, 193bitr4d 220 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   _Vcvv 2799    u. cun 3195   (/)c0 3491   {csn 3666   <.cop 3669   U.cuni 3888   class class class wbr 4083   `'ccnv 4718   dom cdm 4719  tpos ctpos 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-tpos 6391
This theorem is referenced by:  ottposg  6401  dmtpos  6402  rntpos  6403  ovtposg  6405  dftpos3  6408  tpostpos  6410
  Copyright terms: Public domain W3C validator