ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovssunirng Unicode version

Theorem ovssunirng 6009
Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
ovssunirng  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( X F Y )  C_  U. ran  F
)

Proof of Theorem ovssunirng
StepHypRef Expression
1 df-ov 5977 . 2  |-  ( X F Y )  =  ( F `  <. X ,  Y >. )
2 opexg 4293 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W )  -> 
<. X ,  Y >.  e. 
_V )
3 fvssunirng 5618 . . 3  |-  ( <. X ,  Y >.  e. 
_V  ->  ( F `  <. X ,  Y >. ) 
C_  U. ran  F )
42, 3syl 14 . 2  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( F `  <. X ,  Y >. )  C_ 
U. ran  F )
51, 4eqsstrid 3250 1  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( X F Y )  C_  U. ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2180   _Vcvv 2779    C_ wss 3177   <.cop 3649   U.cuni 3867   ran crn 4697   ` cfv 5294  (class class class)co 5974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-cnv 4704  df-dm 4706  df-rn 4707  df-iota 5254  df-fv 5302  df-ov 5977
This theorem is referenced by:  prdsvallem  13271
  Copyright terms: Public domain W3C validator