ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovssunirng GIF version

Theorem ovssunirng 5986
Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
ovssunirng ((𝑋𝑉𝑌𝑊) → (𝑋𝐹𝑌) ⊆ ran 𝐹)

Proof of Theorem ovssunirng
StepHypRef Expression
1 df-ov 5954 . 2 (𝑋𝐹𝑌) = (𝐹‘⟨𝑋, 𝑌⟩)
2 opexg 4276 . . 3 ((𝑋𝑉𝑌𝑊) → ⟨𝑋, 𝑌⟩ ∈ V)
3 fvssunirng 5598 . . 3 (⟨𝑋, 𝑌⟩ ∈ V → (𝐹‘⟨𝑋, 𝑌⟩) ⊆ ran 𝐹)
42, 3syl 14 . 2 ((𝑋𝑉𝑌𝑊) → (𝐹‘⟨𝑋, 𝑌⟩) ⊆ ran 𝐹)
51, 4eqsstrid 3240 1 ((𝑋𝑉𝑌𝑊) → (𝑋𝐹𝑌) ⊆ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  Vcvv 2773  wss 3167  cop 3637   cuni 3852  ran crn 4680  cfv 5276  (class class class)co 5951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-cnv 4687  df-dm 4689  df-rn 4690  df-iota 5237  df-fv 5284  df-ov 5954
This theorem is referenced by:  prdsvallem  13148
  Copyright terms: Public domain W3C validator