| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovssunirng | GIF version | ||
| Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovssunirng | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5954 | . 2 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
| 2 | opexg 4276 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → 〈𝑋, 𝑌〉 ∈ V) | |
| 3 | fvssunirng 5598 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ V → (𝐹‘〈𝑋, 𝑌〉) ⊆ ∪ ran 𝐹) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐹‘〈𝑋, 𝑌〉) ⊆ ∪ ran 𝐹) |
| 5 | 1, 4 | eqsstrid 3240 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3167 〈cop 3637 ∪ cuni 3852 ran crn 4680 ‘cfv 5276 (class class class)co 5951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-cnv 4687 df-dm 4689 df-rn 4690 df-iota 5237 df-fv 5284 df-ov 5954 |
| This theorem is referenced by: prdsvallem 13148 |
| Copyright terms: Public domain | W3C validator |