| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovssunirng | GIF version | ||
| Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovssunirng | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5977 | . 2 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
| 2 | opexg 4293 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → 〈𝑋, 𝑌〉 ∈ V) | |
| 3 | fvssunirng 5618 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ V → (𝐹‘〈𝑋, 𝑌〉) ⊆ ∪ ran 𝐹) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐹‘〈𝑋, 𝑌〉) ⊆ ∪ ran 𝐹) |
| 5 | 1, 4 | eqsstrid 3250 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋𝐹𝑌) ⊆ ∪ ran 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 〈cop 3649 ∪ cuni 3867 ran crn 4697 ‘cfv 5294 (class class class)co 5974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-cnv 4704 df-dm 4706 df-rn 4707 df-iota 5254 df-fv 5302 df-ov 5977 |
| This theorem is referenced by: prdsvallem 13271 |
| Copyright terms: Public domain | W3C validator |