ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovssunirng GIF version

Theorem ovssunirng 6042
Description: The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
ovssunirng ((𝑋𝑉𝑌𝑊) → (𝑋𝐹𝑌) ⊆ ran 𝐹)

Proof of Theorem ovssunirng
StepHypRef Expression
1 df-ov 6010 . 2 (𝑋𝐹𝑌) = (𝐹‘⟨𝑋, 𝑌⟩)
2 opexg 4314 . . 3 ((𝑋𝑉𝑌𝑊) → ⟨𝑋, 𝑌⟩ ∈ V)
3 fvssunirng 5644 . . 3 (⟨𝑋, 𝑌⟩ ∈ V → (𝐹‘⟨𝑋, 𝑌⟩) ⊆ ran 𝐹)
42, 3syl 14 . 2 ((𝑋𝑉𝑌𝑊) → (𝐹‘⟨𝑋, 𝑌⟩) ⊆ ran 𝐹)
51, 4eqsstrid 3270 1 ((𝑋𝑉𝑌𝑊) → (𝑋𝐹𝑌) ⊆ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  Vcvv 2799  wss 3197  cop 3669   cuni 3888  ran crn 4720  cfv 5318  (class class class)co 6007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730  df-iota 5278  df-fv 5326  df-ov 6010
This theorem is referenced by:  prdsvallem  13313
  Copyright terms: Public domain W3C validator