| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsvallem | Unicode version | ||
| Description: Lemma for prdsval 12975. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 12975, dependency on df-hom 12804 removed. (Revised by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| prdsvallem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. 2
| |
| 2 | fnmap 6723 |
. . . 4
| |
| 3 | vex 2766 |
. . . . . . . . . 10
| |
| 4 | 3 | rnex 4934 |
. . . . . . . . 9
|
| 5 | 4 | uniex 4473 |
. . . . . . . 8
|
| 6 | 5 | rnex 4934 |
. . . . . . 7
|
| 7 | 6 | uniex 4473 |
. . . . . 6
|
| 8 | 7 | rnex 4934 |
. . . . 5
|
| 9 | 8 | uniex 4473 |
. . . 4
|
| 10 | 3 | dmex 4933 |
. . . 4
|
| 11 | fnovex 5958 |
. . . 4
| |
| 12 | 2, 9, 10, 11 | mp3an 1348 |
. . 3
|
| 13 | 12 | pwex 4217 |
. 2
|
| 14 | vex 2766 |
. . . . . . . . . 10
| |
| 15 | vex 2766 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | fvex 5581 |
. . . . . . . . 9
|
| 17 | vex 2766 |
. . . . . . . . . 10
| |
| 18 | 17, 15 | fvex 5581 |
. . . . . . . . 9
|
| 19 | ovssunirng 5960 |
. . . . . . . . 9
| |
| 20 | 16, 18, 19 | mp2an 426 |
. . . . . . . 8
|
| 21 | homid 12936 |
. . . . . . . . . . . 12
| |
| 22 | 3, 15 | fvex 5581 |
. . . . . . . . . . . . 13
|
| 23 | 22 | a1i 9 |
. . . . . . . . . . . 12
|
| 24 | homslid 12937 |
. . . . . . . . . . . . . 14
| |
| 25 | 24 | simpri 113 |
. . . . . . . . . . . . 13
|
| 26 | 25 | a1i 9 |
. . . . . . . . . . . 12
|
| 27 | 21, 23, 26 | strfvssn 12725 |
. . . . . . . . . . 11
|
| 28 | 27 | mptru 1373 |
. . . . . . . . . 10
|
| 29 | fvssunirng 5576 |
. . . . . . . . . . . 12
| |
| 30 | 29 | elv 2767 |
. . . . . . . . . . 11
|
| 31 | rnss 4897 |
. . . . . . . . . . 11
| |
| 32 | uniss 3861 |
. . . . . . . . . . 11
| |
| 33 | 30, 31, 32 | mp2b 8 |
. . . . . . . . . 10
|
| 34 | 28, 33 | sstri 3193 |
. . . . . . . . 9
|
| 35 | rnss 4897 |
. . . . . . . . 9
| |
| 36 | uniss 3861 |
. . . . . . . . 9
| |
| 37 | 34, 35, 36 | mp2b 8 |
. . . . . . . 8
|
| 38 | 20, 37 | sstri 3193 |
. . . . . . 7
|
| 39 | 38 | rgenw 2552 |
. . . . . 6
|
| 40 | ss2ixp 6779 |
. . . . . 6
| |
| 41 | 39, 40 | ax-mp 5 |
. . . . 5
|
| 42 | 10, 9 | ixpconst 6776 |
. . . . 5
|
| 43 | 41, 42 | sseqtri 3218 |
. . . 4
|
| 44 | 12, 43 | elpwi2 4192 |
. . 3
|
| 45 | 44 | rgen2w 2553 |
. 2
|
| 46 | 1, 1, 13, 45 | mpoexw 6280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-ixp 6767 df-sub 8216 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-dec 9475 df-ndx 12706 df-slot 12707 df-hom 12804 |
| This theorem is referenced by: prdsval 12975 |
| Copyright terms: Public domain | W3C validator |