| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsvallem | Unicode version | ||
| Description: Lemma for prdsval 13314. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 13314, dependency on df-hom 13142 removed. (Revised by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| prdsvallem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. 2
| |
| 2 | fnmap 6810 |
. . . 4
| |
| 3 | vex 2802 |
. . . . . . . . . 10
| |
| 4 | 3 | rnex 4992 |
. . . . . . . . 9
|
| 5 | 4 | uniex 4528 |
. . . . . . . 8
|
| 6 | 5 | rnex 4992 |
. . . . . . 7
|
| 7 | 6 | uniex 4528 |
. . . . . 6
|
| 8 | 7 | rnex 4992 |
. . . . 5
|
| 9 | 8 | uniex 4528 |
. . . 4
|
| 10 | 3 | dmex 4991 |
. . . 4
|
| 11 | fnovex 6040 |
. . . 4
| |
| 12 | 2, 9, 10, 11 | mp3an 1371 |
. . 3
|
| 13 | 12 | pwex 4267 |
. 2
|
| 14 | vex 2802 |
. . . . . . . . . 10
| |
| 15 | vex 2802 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | fvex 5649 |
. . . . . . . . 9
|
| 17 | vex 2802 |
. . . . . . . . . 10
| |
| 18 | 17, 15 | fvex 5649 |
. . . . . . . . 9
|
| 19 | ovssunirng 6042 |
. . . . . . . . 9
| |
| 20 | 16, 18, 19 | mp2an 426 |
. . . . . . . 8
|
| 21 | homid 13275 |
. . . . . . . . . . . 12
| |
| 22 | 3, 15 | fvex 5649 |
. . . . . . . . . . . . 13
|
| 23 | 22 | a1i 9 |
. . . . . . . . . . . 12
|
| 24 | homslid 13276 |
. . . . . . . . . . . . . 14
| |
| 25 | 24 | simpri 113 |
. . . . . . . . . . . . 13
|
| 26 | 25 | a1i 9 |
. . . . . . . . . . . 12
|
| 27 | 21, 23, 26 | strfvssn 13062 |
. . . . . . . . . . 11
|
| 28 | 27 | mptru 1404 |
. . . . . . . . . 10
|
| 29 | fvssunirng 5644 |
. . . . . . . . . . . 12
| |
| 30 | 29 | elv 2803 |
. . . . . . . . . . 11
|
| 31 | rnss 4954 |
. . . . . . . . . . 11
| |
| 32 | uniss 3909 |
. . . . . . . . . . 11
| |
| 33 | 30, 31, 32 | mp2b 8 |
. . . . . . . . . 10
|
| 34 | 28, 33 | sstri 3233 |
. . . . . . . . 9
|
| 35 | rnss 4954 |
. . . . . . . . 9
| |
| 36 | uniss 3909 |
. . . . . . . . 9
| |
| 37 | 34, 35, 36 | mp2b 8 |
. . . . . . . 8
|
| 38 | 20, 37 | sstri 3233 |
. . . . . . 7
|
| 39 | 38 | rgenw 2585 |
. . . . . 6
|
| 40 | ss2ixp 6866 |
. . . . . 6
| |
| 41 | 39, 40 | ax-mp 5 |
. . . . 5
|
| 42 | 10, 9 | ixpconst 6863 |
. . . . 5
|
| 43 | 41, 42 | sseqtri 3258 |
. . . 4
|
| 44 | 12, 43 | elpwi2 4242 |
. . 3
|
| 45 | 44 | rgen2w 2586 |
. 2
|
| 46 | 1, 1, 13, 45 | mpoexw 6365 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 df-ixp 6854 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-hom 13142 |
| This theorem is referenced by: prdsval 13314 |
| Copyright terms: Public domain | W3C validator |