| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsvallem | Unicode version | ||
| Description: Lemma for prdsval 13272. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 13272, dependency on df-hom 13100 removed. (Revised by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| prdsvallem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2782 |
. 2
| |
| 2 | fnmap 6772 |
. . . 4
| |
| 3 | vex 2782 |
. . . . . . . . . 10
| |
| 4 | 3 | rnex 4968 |
. . . . . . . . 9
|
| 5 | 4 | uniex 4505 |
. . . . . . . 8
|
| 6 | 5 | rnex 4968 |
. . . . . . 7
|
| 7 | 6 | uniex 4505 |
. . . . . 6
|
| 8 | 7 | rnex 4968 |
. . . . 5
|
| 9 | 8 | uniex 4505 |
. . . 4
|
| 10 | 3 | dmex 4967 |
. . . 4
|
| 11 | fnovex 6007 |
. . . 4
| |
| 12 | 2, 9, 10, 11 | mp3an 1352 |
. . 3
|
| 13 | 12 | pwex 4246 |
. 2
|
| 14 | vex 2782 |
. . . . . . . . . 10
| |
| 15 | vex 2782 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | fvex 5623 |
. . . . . . . . 9
|
| 17 | vex 2782 |
. . . . . . . . . 10
| |
| 18 | 17, 15 | fvex 5623 |
. . . . . . . . 9
|
| 19 | ovssunirng 6009 |
. . . . . . . . 9
| |
| 20 | 16, 18, 19 | mp2an 426 |
. . . . . . . 8
|
| 21 | homid 13233 |
. . . . . . . . . . . 12
| |
| 22 | 3, 15 | fvex 5623 |
. . . . . . . . . . . . 13
|
| 23 | 22 | a1i 9 |
. . . . . . . . . . . 12
|
| 24 | homslid 13234 |
. . . . . . . . . . . . . 14
| |
| 25 | 24 | simpri 113 |
. . . . . . . . . . . . 13
|
| 26 | 25 | a1i 9 |
. . . . . . . . . . . 12
|
| 27 | 21, 23, 26 | strfvssn 13020 |
. . . . . . . . . . 11
|
| 28 | 27 | mptru 1384 |
. . . . . . . . . 10
|
| 29 | fvssunirng 5618 |
. . . . . . . . . . . 12
| |
| 30 | 29 | elv 2783 |
. . . . . . . . . . 11
|
| 31 | rnss 4930 |
. . . . . . . . . . 11
| |
| 32 | uniss 3888 |
. . . . . . . . . . 11
| |
| 33 | 30, 31, 32 | mp2b 8 |
. . . . . . . . . 10
|
| 34 | 28, 33 | sstri 3213 |
. . . . . . . . 9
|
| 35 | rnss 4930 |
. . . . . . . . 9
| |
| 36 | uniss 3888 |
. . . . . . . . 9
| |
| 37 | 34, 35, 36 | mp2b 8 |
. . . . . . . 8
|
| 38 | 20, 37 | sstri 3213 |
. . . . . . 7
|
| 39 | 38 | rgenw 2565 |
. . . . . 6
|
| 40 | ss2ixp 6828 |
. . . . . 6
| |
| 41 | 39, 40 | ax-mp 5 |
. . . . 5
|
| 42 | 10, 9 | ixpconst 6825 |
. . . . 5
|
| 43 | 41, 42 | sseqtri 3238 |
. . . 4
|
| 44 | 12, 43 | elpwi2 4221 |
. . 3
|
| 45 | 44 | rgen2w 2566 |
. 2
|
| 46 | 1, 1, 13, 45 | mpoexw 6329 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 df-ixp 6816 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 df-ndx 13001 df-slot 13002 df-hom 13100 |
| This theorem is referenced by: prdsval 13272 |
| Copyright terms: Public domain | W3C validator |