ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsvallem Unicode version

Theorem prdsvallem 13313
Description: Lemma for prdsval 13314. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 13314, dependency on df-hom 13142 removed. (Revised by AV, 13-Oct-2024.)
Assertion
Ref Expression
prdsvallem  |-  ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  e.  _V
Distinct variable groups:    x, r    f,
g, r    v, f,
g

Proof of Theorem prdsvallem
StepHypRef Expression
1 vex 2802 . 2  |-  v  e. 
_V
2 fnmap 6810 . . . 4  |-  ^m  Fn  ( _V  X.  _V )
3 vex 2802 . . . . . . . . . 10  |-  r  e. 
_V
43rnex 4992 . . . . . . . . 9  |-  ran  r  e.  _V
54uniex 4528 . . . . . . . 8  |-  U. ran  r  e.  _V
65rnex 4992 . . . . . . 7  |-  ran  U. ran  r  e.  _V
76uniex 4528 . . . . . 6  |-  U. ran  U.
ran  r  e.  _V
87rnex 4992 . . . . 5  |-  ran  U. ran  U. ran  r  e. 
_V
98uniex 4528 . . . 4  |-  U. ran  U.
ran  U. ran  r  e. 
_V
103dmex 4991 . . . 4  |-  dom  r  e.  _V
11 fnovex 6040 . . . 4  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  U. ran  U. ran  U. ran  r  e.  _V  /\  dom  r  e.  _V )  ->  ( U. ran  U. ran  U. ran  r  ^m  dom  r )  e.  _V )
122, 9, 10, 11mp3an 1371 . . 3  |-  ( U. ran  U. ran  U. ran  r  ^m  dom  r )  e.  _V
1312pwex 4267 . 2  |-  ~P ( U. ran  U. ran  U. ran  r  ^m  dom  r
)  e.  _V
14 vex 2802 . . . . . . . . . 10  |-  f  e. 
_V
15 vex 2802 . . . . . . . . . 10  |-  x  e. 
_V
1614, 15fvex 5649 . . . . . . . . 9  |-  ( f `
 x )  e. 
_V
17 vex 2802 . . . . . . . . . 10  |-  g  e. 
_V
1817, 15fvex 5649 . . . . . . . . 9  |-  ( g `
 x )  e. 
_V
19 ovssunirng 6042 . . . . . . . . 9  |-  ( ( ( f `  x
)  e.  _V  /\  ( g `  x
)  e.  _V )  ->  ( ( f `  x ) ( Hom  `  ( r `  x
) ) ( g `
 x ) ) 
C_  U. ran  ( Hom  `  ( r `  x
) ) )
2016, 18, 19mp2an 426 . . . . . . . 8  |-  ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  U.
ran  ( Hom  `  (
r `  x )
)
21 homid 13275 . . . . . . . . . . . 12  |-  Hom  = Slot  ( Hom  `  ndx )
223, 15fvex 5649 . . . . . . . . . . . . 13  |-  ( r `
 x )  e. 
_V
2322a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  ( r `  x
)  e.  _V )
24 homslid 13276 . . . . . . . . . . . . . 14  |-  ( Hom  = Slot  ( Hom  `  ndx )  /\  ( Hom  `  ndx )  e.  NN )
2524simpri 113 . . . . . . . . . . . . 13  |-  ( Hom  `  ndx )  e.  NN
2625a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  ( Hom  `  ndx )  e.  NN )
2721, 23, 26strfvssn 13062 . . . . . . . . . . 11  |-  ( T. 
->  ( Hom  `  (
r `  x )
)  C_  U. ran  (
r `  x )
)
2827mptru 1404 . . . . . . . . . 10  |-  ( Hom  `  ( r `  x
) )  C_  U. ran  ( r `  x
)
29 fvssunirng 5644 . . . . . . . . . . . 12  |-  ( x  e.  _V  ->  (
r `  x )  C_ 
U. ran  r )
3029elv 2803 . . . . . . . . . . 11  |-  ( r `
 x )  C_  U.
ran  r
31 rnss 4954 . . . . . . . . . . 11  |-  ( ( r `  x ) 
C_  U. ran  r  ->  ran  ( r `  x
)  C_  ran  U. ran  r )
32 uniss 3909 . . . . . . . . . . 11  |-  ( ran  ( r `  x
)  C_  ran  U. ran  r  ->  U. ran  ( r `
 x )  C_  U.
ran  U. ran  r )
3330, 31, 32mp2b 8 . . . . . . . . . 10  |-  U. ran  ( r `  x
)  C_  U. ran  U. ran  r
3428, 33sstri 3233 . . . . . . . . 9  |-  ( Hom  `  ( r `  x
) )  C_  U. ran  U.
ran  r
35 rnss 4954 . . . . . . . . 9  |-  ( ( Hom  `  ( r `  x ) )  C_  U.
ran  U. ran  r  ->  ran  ( Hom  `  (
r `  x )
)  C_  ran  U. ran  U.
ran  r )
36 uniss 3909 . . . . . . . . 9  |-  ( ran  ( Hom  `  (
r `  x )
)  C_  ran  U. ran  U.
ran  r  ->  U. ran  ( Hom  `  ( r `  x ) )  C_  U.
ran  U. ran  U. ran  r )
3734, 35, 36mp2b 8 . . . . . . . 8  |-  U. ran  ( Hom  `  ( r `  x ) )  C_  U.
ran  U. ran  U. ran  r
3820, 37sstri 3233 . . . . . . 7  |-  ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  r
3938rgenw 2585 . . . . . 6  |-  A. x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  r
40 ss2ixp 6866 . . . . . 6  |-  ( A. x  e.  dom  r ( ( f `  x
) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  r  ->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) )  C_  X_ x  e. 
dom  r U. ran  U.
ran  U. ran  r )
4139, 40ax-mp 5 . . . . 5  |-  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  X_ x  e.  dom  r U. ran  U. ran  U. ran  r
4210, 9ixpconst 6863 . . . . 5  |-  X_ x  e.  dom  r U. ran  U.
ran  U. ran  r  =  ( U. ran  U. ran  U. ran  r  ^m  dom  r )
4341, 42sseqtri 3258 . . . 4  |-  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  ( U. ran  U. ran  U.
ran  r  ^m  dom  r )
4412, 43elpwi2 4242 . . 3  |-  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  r  ^m  dom  r )
4544rgen2w 2586 . 2  |-  A. f  e.  v  A. g  e.  v  X_ x  e. 
dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  r  ^m  dom  r )
461, 1, 13, 45mpoexw 6365 1  |-  ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1395   T. wtru 1396    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   U.cuni 3888    X. cxp 4717   dom cdm 4719   ran crn 4720    Fn wfn 5313   ` cfv 5318  (class class class)co 6007    e. cmpo 6009    ^m cmap 6803   X_cixp 6853   NNcn 9118   ndxcnx 13037  Slot cslot 13039   Hom chom 13129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-hom 13142
This theorem is referenced by:  prdsval  13314
  Copyright terms: Public domain W3C validator