ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsvallem Unicode version

Theorem prdsvallem 12974
Description: Lemma for prdsval 12975. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 12975, dependency on df-hom 12804 removed. (Revised by AV, 13-Oct-2024.)
Assertion
Ref Expression
prdsvallem  |-  ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  e.  _V
Distinct variable groups:    x, r    f,
g, r    v, f,
g

Proof of Theorem prdsvallem
StepHypRef Expression
1 vex 2766 . 2  |-  v  e. 
_V
2 fnmap 6723 . . . 4  |-  ^m  Fn  ( _V  X.  _V )
3 vex 2766 . . . . . . . . . 10  |-  r  e. 
_V
43rnex 4934 . . . . . . . . 9  |-  ran  r  e.  _V
54uniex 4473 . . . . . . . 8  |-  U. ran  r  e.  _V
65rnex 4934 . . . . . . 7  |-  ran  U. ran  r  e.  _V
76uniex 4473 . . . . . 6  |-  U. ran  U.
ran  r  e.  _V
87rnex 4934 . . . . 5  |-  ran  U. ran  U. ran  r  e. 
_V
98uniex 4473 . . . 4  |-  U. ran  U.
ran  U. ran  r  e. 
_V
103dmex 4933 . . . 4  |-  dom  r  e.  _V
11 fnovex 5958 . . . 4  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  U. ran  U. ran  U. ran  r  e.  _V  /\  dom  r  e.  _V )  ->  ( U. ran  U. ran  U. ran  r  ^m  dom  r )  e.  _V )
122, 9, 10, 11mp3an 1348 . . 3  |-  ( U. ran  U. ran  U. ran  r  ^m  dom  r )  e.  _V
1312pwex 4217 . 2  |-  ~P ( U. ran  U. ran  U. ran  r  ^m  dom  r
)  e.  _V
14 vex 2766 . . . . . . . . . 10  |-  f  e. 
_V
15 vex 2766 . . . . . . . . . 10  |-  x  e. 
_V
1614, 15fvex 5581 . . . . . . . . 9  |-  ( f `
 x )  e. 
_V
17 vex 2766 . . . . . . . . . 10  |-  g  e. 
_V
1817, 15fvex 5581 . . . . . . . . 9  |-  ( g `
 x )  e. 
_V
19 ovssunirng 5960 . . . . . . . . 9  |-  ( ( ( f `  x
)  e.  _V  /\  ( g `  x
)  e.  _V )  ->  ( ( f `  x ) ( Hom  `  ( r `  x
) ) ( g `
 x ) ) 
C_  U. ran  ( Hom  `  ( r `  x
) ) )
2016, 18, 19mp2an 426 . . . . . . . 8  |-  ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  U.
ran  ( Hom  `  (
r `  x )
)
21 homid 12936 . . . . . . . . . . . 12  |-  Hom  = Slot  ( Hom  `  ndx )
223, 15fvex 5581 . . . . . . . . . . . . 13  |-  ( r `
 x )  e. 
_V
2322a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  ( r `  x
)  e.  _V )
24 homslid 12937 . . . . . . . . . . . . . 14  |-  ( Hom  = Slot  ( Hom  `  ndx )  /\  ( Hom  `  ndx )  e.  NN )
2524simpri 113 . . . . . . . . . . . . 13  |-  ( Hom  `  ndx )  e.  NN
2625a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  ( Hom  `  ndx )  e.  NN )
2721, 23, 26strfvssn 12725 . . . . . . . . . . 11  |-  ( T. 
->  ( Hom  `  (
r `  x )
)  C_  U. ran  (
r `  x )
)
2827mptru 1373 . . . . . . . . . 10  |-  ( Hom  `  ( r `  x
) )  C_  U. ran  ( r `  x
)
29 fvssunirng 5576 . . . . . . . . . . . 12  |-  ( x  e.  _V  ->  (
r `  x )  C_ 
U. ran  r )
3029elv 2767 . . . . . . . . . . 11  |-  ( r `
 x )  C_  U.
ran  r
31 rnss 4897 . . . . . . . . . . 11  |-  ( ( r `  x ) 
C_  U. ran  r  ->  ran  ( r `  x
)  C_  ran  U. ran  r )
32 uniss 3861 . . . . . . . . . . 11  |-  ( ran  ( r `  x
)  C_  ran  U. ran  r  ->  U. ran  ( r `
 x )  C_  U.
ran  U. ran  r )
3330, 31, 32mp2b 8 . . . . . . . . . 10  |-  U. ran  ( r `  x
)  C_  U. ran  U. ran  r
3428, 33sstri 3193 . . . . . . . . 9  |-  ( Hom  `  ( r `  x
) )  C_  U. ran  U.
ran  r
35 rnss 4897 . . . . . . . . 9  |-  ( ( Hom  `  ( r `  x ) )  C_  U.
ran  U. ran  r  ->  ran  ( Hom  `  (
r `  x )
)  C_  ran  U. ran  U.
ran  r )
36 uniss 3861 . . . . . . . . 9  |-  ( ran  ( Hom  `  (
r `  x )
)  C_  ran  U. ran  U.
ran  r  ->  U. ran  ( Hom  `  ( r `  x ) )  C_  U.
ran  U. ran  U. ran  r )
3734, 35, 36mp2b 8 . . . . . . . 8  |-  U. ran  ( Hom  `  ( r `  x ) )  C_  U.
ran  U. ran  U. ran  r
3820, 37sstri 3193 . . . . . . 7  |-  ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  r
3938rgenw 2552 . . . . . 6  |-  A. x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  r
40 ss2ixp 6779 . . . . . 6  |-  ( A. x  e.  dom  r ( ( f `  x
) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  r  ->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) )  C_  X_ x  e. 
dom  r U. ran  U.
ran  U. ran  r )
4139, 40ax-mp 5 . . . . 5  |-  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  X_ x  e.  dom  r U. ran  U. ran  U. ran  r
4210, 9ixpconst 6776 . . . . 5  |-  X_ x  e.  dom  r U. ran  U.
ran  U. ran  r  =  ( U. ran  U. ran  U. ran  r  ^m  dom  r )
4341, 42sseqtri 3218 . . . 4  |-  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  C_  ( U. ran  U. ran  U.
ran  r  ^m  dom  r )
4412, 43elpwi2 4192 . . 3  |-  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  r  ^m  dom  r )
4544rgen2w 2553 . 2  |-  A. f  e.  v  A. g  e.  v  X_ x  e. 
dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  e. 
~P ( U. ran  U.
ran  U. ran  r  ^m  dom  r )
461, 1, 13, 45mpoexw 6280 1  |-  ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364   T. wtru 1365    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157   ~Pcpw 3606   U.cuni 3840    X. cxp 4662   dom cdm 4664   ran crn 4665    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    e. cmpo 5927    ^m cmap 6716   X_cixp 6766   NNcn 9007   ndxcnx 12700  Slot cslot 12702   Hom chom 12791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-sub 8216  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-dec 9475  df-ndx 12706  df-slot 12707  df-hom 12804
This theorem is referenced by:  prdsval  12975
  Copyright terms: Public domain W3C validator