| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovexg | Unicode version | ||
| Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| ovexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5949 |
. 2
| |
| 2 | simp2 1001 |
. . 3
| |
| 3 | opexg 4273 |
. . . 4
| |
| 4 | 3 | 3adant2 1019 |
. . 3
|
| 5 | fvexg 5597 |
. . 3
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. 2
|
| 7 | 1, 6 | eqeltrid 2292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-cnv 4684 df-dm 4686 df-rn 4687 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: mapxpen 6947 seq1g 10610 seqp1g 10613 seqclg 10619 seqm1g 10621 seqfeq4g 10678 prdsplusgfval 13149 prdsmulrfval 13151 imasex 13170 imasival 13171 imasbas 13172 imasplusg 13173 imasmulr 13174 imasaddfnlemg 13179 imasaddvallemg 13180 plusfvalg 13228 plusffng 13230 gsumsplit1r 13263 gsumprval 13264 gsumfzz 13360 gsumwsubmcl 13361 gsumfzcl 13364 grpsubval 13411 mulgval 13491 mulgfng 13493 mulgnngsum 13496 mulg1 13498 mulgnnp1 13499 mulgnndir 13520 subgintm 13567 subrngintm 14007 scafvalg 14102 scaffng 14104 rmodislmodlem 14145 rmodislmod 14146 lsssn0 14165 lss1d 14178 lssintclm 14179 ellspsn 14212 crngridl 14325 metrest 15011 |
| Copyright terms: Public domain | W3C validator |