ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovexg Unicode version

Theorem ovexg 5956
Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
ovexg  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  ->  ( A F B )  e.  _V )

Proof of Theorem ovexg
StepHypRef Expression
1 df-ov 5925 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 simp2 1000 . . 3  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  ->  F  e.  W )
3 opexg 4261 . . . 4  |-  ( ( A  e.  V  /\  B  e.  X )  -> 
<. A ,  B >.  e. 
_V )
433adant2 1018 . . 3  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  -> 
<. A ,  B >.  e. 
_V )
5 fvexg 5577 . . 3  |-  ( ( F  e.  W  /\  <. A ,  B >.  e. 
_V )  ->  ( F `  <. A ,  B >. )  e.  _V )
62, 4, 5syl2anc 411 . 2  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  ->  ( F `  <. A ,  B >. )  e.  _V )
71, 6eqeltrid 2283 1  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  ->  ( A F B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    e. wcel 2167   _Vcvv 2763   <.cop 3625   ` cfv 5258  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  mapxpen  6909  seq1g  10555  seqp1g  10558  seqclg  10564  seqm1g  10566  seqfeq4g  10623  imasex  12948  imasival  12949  imasbas  12950  imasplusg  12951  imasmulr  12952  imasaddfnlemg  12957  imasaddvallemg  12958  plusfvalg  13006  plusffng  13008  gsumsplit1r  13041  gsumprval  13042  gsumfzz  13127  gsumwsubmcl  13128  gsumfzcl  13131  grpsubval  13178  mulgval  13252  mulgfng  13254  mulgnngsum  13257  mulg1  13259  mulgnnp1  13260  mulgnndir  13281  subgintm  13328  subrngintm  13768  scafvalg  13863  scaffng  13865  rmodislmodlem  13906  rmodislmod  13907  lsssn0  13926  lss1d  13939  lssintclm  13940  ellspsn  13973  crngridl  14086  metrest  14742
  Copyright terms: Public domain W3C validator