ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovexg Unicode version

Theorem ovexg 5887
Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
ovexg  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  ->  ( A F B )  e.  _V )

Proof of Theorem ovexg
StepHypRef Expression
1 df-ov 5856 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 simp2 993 . . 3  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  ->  F  e.  W )
3 opexg 4213 . . . 4  |-  ( ( A  e.  V  /\  B  e.  X )  -> 
<. A ,  B >.  e. 
_V )
433adant2 1011 . . 3  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  -> 
<. A ,  B >.  e. 
_V )
5 fvexg 5515 . . 3  |-  ( ( F  e.  W  /\  <. A ,  B >.  e. 
_V )  ->  ( F `  <. A ,  B >. )  e.  _V )
62, 4, 5syl2anc 409 . 2  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  ->  ( F `  <. A ,  B >. )  e.  _V )
71, 6eqeltrid 2257 1  |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X )  ->  ( A F B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 973    e. wcel 2141   _Vcvv 2730   <.cop 3586   ` cfv 5198  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  mapxpen  6826  plusfvalg  12617  plusffng  12619  grpsubval  12749  metrest  13300
  Copyright terms: Public domain W3C validator