| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovexg | Unicode version | ||
| Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| ovexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6004 |
. 2
| |
| 2 | simp2 1022 |
. . 3
| |
| 3 | opexg 4314 |
. . . 4
| |
| 4 | 3 | 3adant2 1040 |
. . 3
|
| 5 | fvexg 5646 |
. . 3
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. 2
|
| 7 | 1, 6 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-cnv 4727 df-dm 4729 df-rn 4730 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: mapxpen 7009 seq1g 10685 seqp1g 10688 seqclg 10694 seqm1g 10696 seqfeq4g 10753 prdsplusgfval 13317 prdsmulrfval 13319 imasex 13338 imasival 13339 imasbas 13340 imasplusg 13341 imasmulr 13342 imasaddfnlemg 13347 imasaddvallemg 13348 plusfvalg 13396 plusffng 13398 gsumsplit1r 13431 gsumprval 13432 gsumfzz 13528 gsumwsubmcl 13529 gsumfzcl 13532 grpsubval 13579 mulgval 13659 mulgfng 13661 mulgnngsum 13664 mulg1 13666 mulgnnp1 13667 mulgnndir 13688 subgintm 13735 subrngintm 14176 scafvalg 14271 scaffng 14273 rmodislmodlem 14314 rmodislmod 14315 lsssn0 14334 lss1d 14347 lssintclm 14348 ellspsn 14381 crngridl 14494 metrest 15180 |
| Copyright terms: Public domain | W3C validator |