| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovexg | Unicode version | ||
| Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| ovexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5928 |
. 2
| |
| 2 | simp2 1000 |
. . 3
| |
| 3 | opexg 4262 |
. . . 4
| |
| 4 | 3 | 3adant2 1018 |
. . 3
|
| 5 | fvexg 5580 |
. . 3
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. 2
|
| 7 | 1, 6 | eqeltrid 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: mapxpen 6918 seq1g 10572 seqp1g 10575 seqclg 10581 seqm1g 10583 seqfeq4g 10640 prdsplusgfval 12986 prdsmulrfval 12988 imasex 13007 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 imasaddfnlemg 13016 imasaddvallemg 13017 plusfvalg 13065 plusffng 13067 gsumsplit1r 13100 gsumprval 13101 gsumfzz 13197 gsumwsubmcl 13198 gsumfzcl 13201 grpsubval 13248 mulgval 13328 mulgfng 13330 mulgnngsum 13333 mulg1 13335 mulgnnp1 13336 mulgnndir 13357 subgintm 13404 subrngintm 13844 scafvalg 13939 scaffng 13941 rmodislmodlem 13982 rmodislmod 13983 lsssn0 14002 lss1d 14015 lssintclm 14016 ellspsn 14049 crngridl 14162 metrest 14826 |
| Copyright terms: Public domain | W3C validator |