ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1i Unicode version

Theorem prodeq1i 11843
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1i.1  |-  A  =  B
Assertion
Ref Expression
prodeq1i  |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
Distinct variable groups:    A, k    B, k
Allowed substitution hint:    C( k)

Proof of Theorem prodeq1i
StepHypRef Expression
1 prodeq1i.1 . 2  |-  A  =  B
2 prodeq1 11835 . 2  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
31, 2ax-mp 5 1  |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
Colors of variables: wff set class
Syntax hints:    = wceq 1372   prod_cprod 11832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-recs 6390  df-frec 6476  df-seqfrec 10591  df-proddc 11833
This theorem is referenced by:  prodeq12i  11845  fprodfac  11897  fprodxp  11906
  Copyright terms: Public domain W3C validator