ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1i Unicode version

Theorem prodeq1i 11704
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1i.1  |-  A  =  B
Assertion
Ref Expression
prodeq1i  |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
Distinct variable groups:    A, k    B, k
Allowed substitution hint:    C( k)

Proof of Theorem prodeq1i
StepHypRef Expression
1 prodeq1i.1 . 2  |-  A  =  B
2 prodeq1 11696 . 2  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
31, 2ax-mp 5 1  |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
Colors of variables: wff set class
Syntax hints:    = wceq 1364   prod_cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-seqfrec 10519  df-proddc 11694
This theorem is referenced by:  prodeq12i  11706  fprodfac  11758  fprodxp  11767
  Copyright terms: Public domain W3C validator