ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1i Unicode version

Theorem prodeq1i 11726
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1i.1  |-  A  =  B
Assertion
Ref Expression
prodeq1i  |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
Distinct variable groups:    A, k    B, k
Allowed substitution hint:    C( k)

Proof of Theorem prodeq1i
StepHypRef Expression
1 prodeq1i.1 . 2  |-  A  =  B
2 prodeq1 11718 . 2  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
31, 2ax-mp 5 1  |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
Colors of variables: wff set class
Syntax hints:    = wceq 1364   prod_cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-seqfrec 10540  df-proddc 11716
This theorem is referenced by:  prodeq12i  11728  fprodfac  11780  fprodxp  11789
  Copyright terms: Public domain W3C validator