HomeHome Intuitionistic Logic Explorer
Theorem List (p. 116 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11501-11600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcos01bnd 11501 Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  (
 0 (,] 1 )  ->  ( ( 1  -  ( 2  x.  (
 ( A ^ 2
 )  /  3 )
 ) )  <  ( cos `  A )  /\  ( cos `  A )  <  ( 1  -  (
 ( A ^ 2
 )  /  3 )
 ) ) )
 
Theoremcos1bnd 11502 Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( ( 1  / 
 3 )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 2  /  3
 ) )
 
Theoremcos2bnd 11503 Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( -u ( 7  / 
 9 )  <  ( cos `  2 )  /\  ( cos `  2 )  < 
 -u ( 1  / 
 9 ) )
 
Theoremsin01gt0 11504 The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
 |-  ( A  e.  (
 0 (,] 1 )  -> 
 0  <  ( sin `  A ) )
 
Theoremcos01gt0 11505 The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( A  e.  (
 0 (,] 1 )  -> 
 0  <  ( cos `  A ) )
 
Theoremsin02gt0 11506 The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( A  e.  (
 0 (,] 2 )  -> 
 0  <  ( sin `  A ) )
 
Theoremsincos1sgn 11507 The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( 0  <  ( sin `  1 )  /\  0  <  ( cos `  1
 ) )
 
Theoremsincos2sgn 11508 The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( 0  <  ( sin `  2 )  /\  ( cos `  2 )  <  0 )
 
Theoremsin4lt0 11509 The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
 |-  ( sin `  4
 )  <  0
 
Theoremcos12dec 11510 Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
 |-  ( ( A  e.  ( 1 [,] 2
 )  /\  B  e.  ( 1 [,] 2
 )  /\  A  <  B )  ->  ( cos `  B )  <  ( cos `  A ) )
 
Theoremabsefi 11511 The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.)
 |-  ( A  e.  RR  ->  ( abs `  ( exp `  ( _i  x.  A ) ) )  =  1 )
 
Theoremabsef 11512 The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.)
 |-  ( A  e.  CC  ->  ( abs `  ( exp `  A ) )  =  ( exp `  ( Re `  A ) ) )
 
Theoremabsefib 11513 A complex number is real iff the exponential of its product with  _i has absolute value one. (Contributed by NM, 21-Aug-2008.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( abs `  ( exp `  ( _i  x.  A ) ) )  =  1 ) )
 
Theoremefieq1re 11514 A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
 |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )
 
Theoremdemoivre 11515 De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 11516 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.)
 |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A ) )  +  ( _i  x.  ( sin `  ( N  x.  A ) ) ) ) )
 
TheoremdemoivreALT 11516 Alternate proof of demoivre 11515. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A ) )  +  ( _i  x.  ( sin `  ( N  x.  A ) ) ) ) )
 
4.9.1.1  The circle constant (tau = 2 pi)
 
Syntaxctau 11517 Extend class notation to include the constant tau,  tau = 6.28318....
 class  tau
 
Definitiondf-tau 11518 Define the circle constant tau, 
tau = 6.28318..., which is the smallest positive real number whose cosine is one. Various notations have been used or proposed for this number including  tau, a three-legged variant of  pi, or  2 pi. Note the difference between this constant  tau and the formula variable  ta. Following our convention, the constant is displayed in upright font while the variable is in italic font; furthermore, the colors are different. (Contributed by Jim Kingdon, 9-Apr-2018.) (Revised by AV, 1-Oct-2020.)
 |- 
 tau  = inf ( ( RR+ 
 i^i  ( `' cos " { 1 } )
 ) ,  RR ,  <  )
 
4.9.2  _e is irrational
 
Theoremeirraplem 11519* Lemma for eirrap 11520. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
 |-  F  =  ( n  e.  NN0  |->  ( 1 
 /  ( ! `  n ) ) )   &    |-  ( ph  ->  P  e.  ZZ )   &    |-  ( ph  ->  Q  e.  NN )   =>    |-  ( ph  ->  _e #  ( P  /  Q ) )
 
Theoremeirrap 11520  _e is irrational. That is, for any rational number,  _e is apart from it. In the absence of excluded middle, we can distinguish between this and saying that  _e is not rational, which is eirr 11521. (Contributed by Jim Kingdon, 6-Jan-2023.)
 |-  ( Q  e.  QQ  ->  _e #  Q )
 
Theoremeirr 11521  _e is not rational. In the absence of excluded middle, we can distinguish between this and saying that  _e is irrational in the sense of being apart from any rational number, which is eirrap 11520. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 6-Jan-2023.)
 |-  _e  e/  QQ
 
Theoremegt2lt3 11522 Euler's constant  _e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.)
 |-  ( 2  <  _e  /\  _e  <  3 )
 
Theoremepos 11523 Euler's constant  _e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.)
 |-  0  <  _e
 
Theoremepr 11524 Euler's constant  _e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.)
 |-  _e  e.  RR+
 
Theoremene0 11525  _e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.)
 |-  _e  =/=  0
 
Theoremeap0 11526  _e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.)
 |-  _e #  0
 
Theoremene1 11527  _e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.)
 |-  _e  =/=  1
 
Theoremeap1 11528  _e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.)
 |-  _e #  1
 
PART 5  ELEMENTARY NUMBER THEORY

Here we introduce elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory.

 
5.1  Elementary properties of divisibility
 
5.1.1  The divides relation
 
Syntaxcdvds 11529 Extend the definition of a class to include the divides relation. See df-dvds 11530.
 class  ||
 
Definitiondf-dvds 11530* Define the divides relation, see definition in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
 
Theoremdivides 11531* Define the divides relation.  M  ||  N means  M divides into  N with no remainder. For example,  3  ||  6 (ex-dvds 13113). As proven in dvdsval3 11533, 
M  ||  N  <->  ( N  mod  M )  =  0. See divides 11531 and dvdsval2 11532 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <-> 
 E. n  e.  ZZ  ( n  x.  M )  =  N )
 )
 
Theoremdvdsval2 11532 One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
 |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
 
Theoremdvdsval3 11533 One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  ( N  mod  M )  =  0 )
 )
 
Theoremdvdszrcl 11534 Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
 |-  ( X  ||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ )
 )
 
Theoremnndivdvds 11535 Strong form of dvdsval2 11532 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  ||  A 
 <->  ( A  /  B )  e.  NN )
 )
 
Theoremnndivides 11536* Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  ||  N 
 <-> 
 E. n  e.  NN  ( n  x.  M )  =  N )
 )
 
Theoremdvdsdc 11537 Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  -> DECID  M  ||  N )
 
Theoremmoddvds 11538 Two ways to say  A  ==  B (mod  N), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  mod  N )  =  ( B 
 mod  N )  <->  N  ||  ( A  -  B ) ) )
 
Theoremdvds0lem 11539 A lemma to assist theorems of 
|| with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  x.  M )  =  N )  ->  M  ||  N )
 
Theoremdvds1lem 11540* A lemma to assist theorems of 
|| with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )   &    |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )   &    |-  ( ( ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )   &    |-  (
 ( ph  /\  x  e. 
 ZZ )  ->  (
 ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )   =>    |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
 
Theoremdvds2lem 11541* A lemma to assist theorems of 
|| with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )   &    |-  ( ph  ->  ( K  e.  ZZ  /\  L  e.  ZZ ) )   &    |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ )
 )   &    |-  ( ( ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  Z  e.  ZZ )   &    |-  (
 ( ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  ( Z  x.  M )  =  N ) )   =>    |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L )  ->  M  ||  N )
 )
 
Theoremiddvds 11542 An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  N  ||  N )
 
Theorem1dvds 11543 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  1  ||  N )
 
Theoremdvds0 11544 Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  N  ||  0 )
 
Theoremnegdvdsb 11545 An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  -u M  ||  N ) )
 
Theoremdvdsnegb 11546 An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  -u N ) )
 
Theoremabsdvdsb 11547 An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  ( abs `  M )  ||  N ) )
 
Theoremdvdsabsb 11548 An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( abs `  N ) ) )
 
Theorem0dvds 11549 Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( 0  ||  N  <->  N  =  0 ) )
 
Theoremzdvdsdc 11550 Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  ||  N )
 
Theoremdvdsmul1 11551 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
 
Theoremdvdsmul2 11552 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
 
Theoremiddvdsexp 11553 An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  ||  ( M ^ N ) )
 
Theoremmuldvds1 11554 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  ||  N  ->  K 
 ||  N ) )
 
Theoremmuldvds2 11555 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  ||  N  ->  M 
 ||  N ) )
 
Theoremdvdscmul 11556 Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N ) ) )
 
Theoremdvdsmulc 11557 Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K ) ) )
 
Theoremdvdscmulr 11558 Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( ( K  x.  M )  ||  ( K  x.  N ) 
 <->  M  ||  N )
 )
 
Theoremdvdsmulcr 11559 Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( ( M  x.  K )  ||  ( N  x.  K ) 
 <->  M  ||  N )
 )
 
Theoremsummodnegmod 11560 The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  +  B )  mod  N )  =  0  <->  ( A  mod  N )  =  ( -u B  mod  N ) ) )
 
Theoremmodmulconst 11561 Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( A  mod  M )  =  ( B  mod  M )  <->  ( ( C  x.  A )  mod  ( C  x.  M ) )  =  (
 ( C  x.  B )  mod  ( C  x.  M ) ) ) )
 
Theoremdvds2ln 11562 If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  (
 ( K  ||  M  /\  K  ||  N )  ->  K  ||  ( ( I  x.  M )  +  ( J  x.  N ) ) ) )
 
Theoremdvds2add 11563 If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  +  N )
 ) )
 
Theoremdvds2sub 11564 If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  -  N ) ) )
 
Theoremdvds2subd 11565 Natural deduction form of dvds2sub 11564. (Contributed by Stanislas Polu, 9-Mar-2020.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  K 
 ||  M )   &    |-  ( ph  ->  K  ||  N )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  K 
 ||  ( M  -  N ) )
 
Theoremdvdstr 11566 The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  /\  M  ||  N )  ->  K  ||  N ) )
 
Theoremdvdsmultr1 11567 If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  M  ->  K  ||  ( M  x.  N ) ) )
 
Theoremdvdsmultr1d 11568 Natural deduction form of dvdsmultr1 11567. (Contributed by Stanislas Polu, 9-Mar-2020.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  ||  M )   =>    |-  ( ph  ->  K  ||  ( M  x.  N ) )
 
Theoremdvdsmultr2 11569 If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  N  ->  K  ||  ( M  x.  N ) ) )
 
Theoremordvdsmul 11570 If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  \/  K  ||  N )  ->  K  ||  ( M  x.  N ) ) )
 
Theoremdvdssub2 11571 If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
 |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K 
 ||  M  <->  K  ||  N ) )
 
Theoremdvdsadd 11572 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( M  +  N ) ) )
 
Theoremdvdsaddr 11573 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( N  +  M ) ) )
 
Theoremdvdssub 11574 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( M  -  N ) ) )
 
Theoremdvdssubr 11575 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( N  -  M ) ) )
 
Theoremdvdsadd2b 11576 Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C )
 )  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) )
 
Theoremdvdslelemd 11577 Lemma for dvdsle 11578. (Contributed by Jim Kingdon, 8-Nov-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( K  x.  M )  =/= 
 N )
 
Theoremdvdsle 11578 The divisors of a positive integer are bounded by it. The proof does not use  /. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  ||  N  ->  M  <_  N ) )
 
Theoremdvdsleabs 11579 The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in [ApostolNT] p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  ||  N  ->  M  <_  ( abs `  N ) ) )
 
Theoremdvdsleabs2 11580 Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  ||  N  ->  ( abs `  M )  <_  ( abs `  N ) ) )
 
Theoremdvdsabseq 11581 If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
 |-  ( ( M  ||  N  /\  N  ||  M )  ->  ( abs `  M )  =  ( abs `  N ) )
 
Theoremdvdseq 11582 If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.)
 |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M 
 ||  N  /\  N  ||  M ) )  ->  M  =  N )
 
Theoremdivconjdvds 11583 If a nonzero integer  M divides another integer  N, the other integer  N divided by the nonzero integer  M (i.e. the divisor conjugate of  N to  M) divides the other integer  N. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
 |-  ( ( M  ||  N  /\  M  =/=  0
 )  ->  ( N  /  M )  ||  N )
 
Theoremdvdsdivcl 11584* The complement of a divisor of  N is also a divisor of  N. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
 |-  ( ( N  e.  NN  /\  A  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  A )  e.  { x  e. 
 NN  |  x  ||  N } )
 
Theoremdvdsflip 11585* An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
 |-  A  =  { x  e.  NN  |  x  ||  N }   &    |-  F  =  ( y  e.  A  |->  ( N  /  y ) )   =>    |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
 
Theoremdvdsssfz1 11586* The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( A  e.  NN  ->  { p  e.  NN  |  p  ||  A }  C_  ( 1 ... A ) )
 
Theoremdvds1 11587 The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.)
 |-  ( M  e.  NN0  ->  ( M  ||  1  <->  M  =  1
 ) )
 
Theoremalzdvds 11588* Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( A. x  e. 
 ZZ  x  ||  N  <->  N  =  0 ) )
 
Theoremdvdsext 11589* Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( A  =  B  <->  A. x  e.  NN0  ( A  ||  x  <->  B  ||  x ) ) )
 
Theoremfzm1ndvds 11590 No number between  1 and  M  - 
1 divides  M. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  ( ( M  e.  NN  /\  N  e.  (
 1 ... ( M  -  1 ) ) ) 
 ->  -.  M  ||  N )
 
Theoremfzo0dvdseq 11591 Zero is the only one of the first 
A nonnegative integers that is divisible by  A. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( B  e.  (
 0..^ A )  ->  ( A  ||  B  <->  B  =  0
 ) )
 
Theoremfzocongeq 11592 Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( ( D  -  C )  ||  ( A  -  B )  <->  A  =  B ) )
 
TheoremaddmodlteqALT 11593 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10202 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
 
Theoremdvdsfac 11594 A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
 |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>=
 `  K ) ) 
 ->  K  ||  ( ! `  N ) )
 
Theoremdvdsexp 11595 A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  ->  ( A ^ M ) 
 ||  ( A ^ N ) )
 
Theoremdvdsmod 11596 Any number  K whose mod base  N is divisible by a divisor  P of the base is also divisible by 
P. This means that primes will also be relatively prime to the base when reduced  mod 
N for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P 
 ||  ( K  mod  N )  <->  P  ||  K ) )
 
Theoremmulmoddvds 11597 If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  ( ( A  x.  B )  mod  N )  =  0 ) )
 
Theorem3dvdsdec 11598 A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A and  B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A and  B, especially if  A is itself a decimal number, e.g.  A  = ; C D. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |-  ( 3  || ; A B  <->  3  ||  ( A  +  B )
 )
 
Theorem3dvds2dec 11599 A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A,  B and  C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A,  B and  C. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   =>    |-  ( 3  || ;; A B C  <->  3  ||  (
 ( A  +  B )  +  C )
 )
 
5.1.2  Even and odd numbers

The set  ZZ of integers can be partitioned into the set of even numbers and the set of odd numbers, see zeo4 11603. Instead of defining new class variables Even and Odd to represent these sets, we use the idiom  2 
||  N to say that " N is even" (which implies  N  e.  ZZ, see evenelz 11600) and  -.  2  ||  N to say that " N is odd" (under the assumption that  N  e.  ZZ). The previously proven theorems about even and odd numbers, like zneo 9176, zeo 9180, zeo2 9181, etc. use different representations, which are equivalent with the representations using the divides relation, see evend2 11622 and oddp1d2 11623. The corresponding theorems are zeneo 11604, zeo3 11601 and zeo4 11603.

 
Theoremevenelz 11600 An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11534. (Contributed by AV, 22-Jun-2021.)
 |-  ( 2  ||  N  ->  N  e.  ZZ )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >