Theorem List for Intuitionistic Logic Explorer - 11501-11600   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | climsqz2 11501* | 
Convergence of a sequence sandwiched between another converging
         sequence and its limit.  (Contributed by NM, 14-Feb-2008.)  (Revised
         by Mario Carneiro, 3-Feb-2014.)
 | 
                                                
                                                                                                       
                                                     
                            | 
|   | 
| Theorem | clim2ser 11502* | 
The limit of an infinite series with an initial segment removed.
           (Contributed by Paul Chapman, 9-Feb-2008.)  (Revised by Mario
           Carneiro, 1-Feb-2014.)
 | 
                                           
                                              
                                   
                          | 
|   | 
| Theorem | clim2ser2 11503* | 
The limit of an infinite series with an initial segment added.
           (Contributed by Paul Chapman, 9-Feb-2008.)  (Revised by Mario
           Carneiro, 1-Feb-2014.)
 | 
                                           
                                                    
                             
                          | 
|   | 
| Theorem | iserex 11504* | 
An infinite series converges, if and only if the series does with
         initial terms removed.  (Contributed by Paul Chapman, 9-Feb-2008.)
         (Revised by Mario Carneiro, 27-Apr-2014.)
 | 
                                           
                                                
                     
    
    | 
|   | 
| Theorem | isermulc2 11505* | 
Multiplication of an infinite series by a constant.  (Contributed by
         Paul Chapman, 14-Nov-2007.)  (Revised by Jim Kingdon, 8-Apr-2023.)
 | 
                                                                      
                                                        
                                                   
                 | 
|   | 
| Theorem | climlec2 11506* | 
Comparison of a constant to the limit of a sequence.  (Contributed by
         NM, 28-Feb-2008.)  (Revised by Mario Carneiro, 1-Feb-2014.)
 | 
                                                                                                                     
                                           | 
|   | 
| Theorem | iserle 11507* | 
Comparison of the limits of two infinite series.  (Contributed by Paul
         Chapman, 12-Nov-2007.)  (Revised by Mario Carneiro, 3-Feb-2014.)
 | 
                                                         
                             
               
                                                                    
                                               | 
|   | 
| Theorem | iserge0 11508* | 
The limit of an infinite series of nonnegative reals is nonnegative.
         (Contributed by Paul Chapman, 9-Feb-2008.)  (Revised by Mario
         Carneiro, 3-Feb-2014.)
 | 
                                                         
               
                                               
                      
        | 
|   | 
| Theorem | climub 11509* | 
The limit of a monotonic sequence is an upper bound.  (Contributed by
         NM, 18-Mar-2005.)  (Revised by Mario Carneiro, 10-Feb-2014.)
 | 
                                                
               
                                                     
                                      | 
|   | 
| Theorem | climserle 11510* | 
The partial sums of a converging infinite series with nonnegative
         terms are bounded by its limit.  (Contributed by NM, 27-Dec-2005.)
         (Revised by Mario Carneiro, 9-Feb-2014.)
 | 
                                                         
               
                                               
                      
                      | 
|   | 
| Theorem | iser3shft 11511* | 
Index shift of the limit of an infinite series.  (Contributed by Mario
       Carneiro, 6-Sep-2013.)  (Revised by Jim Kingdon, 17-Oct-2022.)
 | 
                                                                                
                              
        
      
                                       
                                    | 
|   | 
| Theorem | climcau 11512* | 
A converging sequence of complex numbers is a Cauchy sequence.  The
       converse would require excluded middle or a different definition of
       Cauchy sequence (for example, fixing a rate of convergence as in
       climcvg1n 11515).  Theorem 12-5.3 of [Gleason] p. 180 (necessity part).
       (Contributed by NM, 16-Apr-2005.)  (Revised by Mario Carneiro,
       26-Apr-2014.)
 | 
                                                            
               
                | 
|   | 
| Theorem | climrecvg1n 11513* | 
A Cauchy sequence of real numbers converges, existence version.  The
       rate of convergence is fixed: all terms after the nth term must be
       within       of the nth term, where   is a constant multiplier.
       (Contributed by Jim Kingdon, 23-Aug-2021.)
 | 
                                                                                                           
           | 
|   | 
| Theorem | climcvg1nlem 11514* | 
Lemma for climcvg1n 11515.  We construct sequences of the real and
         imaginary parts of each term of  , show those converge, and use
         that to show that   converges.  (Contributed by Jim Kingdon,
         24-Aug-2021.)
 | 
                                                                                                          
                                                                                                              | 
|   | 
| Theorem | climcvg1n 11515* | 
A Cauchy sequence of complex numbers converges, existence version.
         The rate of convergence is fixed: all terms after the nth term must be
         within       of the nth term, where   is a constant
         multiplier.  (Contributed by Jim Kingdon, 23-Aug-2021.)
 | 
                                                                                                           
           | 
|   | 
| Theorem | climcaucn 11516* | 
A converging sequence of complex numbers is a Cauchy sequence.  This is
       like climcau 11512 but adds the part that       is complex.
       (Contributed by Jim Kingdon, 24-Aug-2021.)
 | 
                                                            
                                             | 
|   | 
| Theorem | serf0 11517* | 
If an infinite series converges, its underlying sequence converges to
       zero.  (Contributed by NM, 2-Sep-2005.)  (Revised by Mario Carneiro,
       16-Feb-2014.)
 | 
                                                                      
       
    
              
                                           | 
|   | 
| 4.9.2  Finite and infinite sums
 | 
|   | 
| Syntax | csu 11518 | 
Extend class notation to include finite summations.  (An underscore was
     added to the ASCII token in order to facilitate set.mm text searches,
     since "sum" is a commonly used word in comments.)
 | 
           | 
|   | 
| Definition | df-sumdc 11519* | 
Define the sum of a series with an index set of integers  .  The
       variable   is
normally a free variable in  , i.e.,   can
be
       thought of as     .  This definition is the result of a
       collection of discussions over the most general definition for a sum
       that does not need the index set to have a specified ordering.  This
       definition is in two parts, one for finite sums and one for subsets of
       the upper integers.  When summing over a subset of the upper integers,
       we extend the index set to the upper integers by adding zero outside the
       domain, and then sum the set in order, setting the result to the limit
       of the partial sums, if it exists.  This means that conditionally
       convergent sums can be evaluated meaningfully.  For finite sums, we are
       explicitly order-independent, by picking any bijection to a 1-based
       finite sequence and summing in the induced order.  In both cases we have
       an  
expression so that we only need   to be defined where
            .  In the infinite case, we also require
that the indexing
       set be a decidable subset of an upperset of integers (that is,
       membership of integers in it is decidable).  These two methods of
       summation produce the same result on their common region of definition
       (i.e., finite sets of integers).  Examples:
                       means              , and
                             means 1/2 + 1/4 + 1/8 + ... = 1
       (geoihalfsum 11687).  (Contributed by NM, 11-Dec-2005.) 
(Revised by Jim
       Kingdon, 21-May-2023.)
 | 
    
        
                                   DECID              
       
          
          ![]_  ]_](_urbrack.gif)   
       
                                                                  
    ![]_  ]_](_urbrack.gif)               | 
|   | 
| Theorem | sumeq1 11520 | 
Equality theorem for a sum.  (Contributed by NM, 11-Dec-2005.)  (Revised
       by Mario Carneiro, 13-Jun-2019.)
 | 
             
        
           | 
|   | 
| Theorem | nfsum1 11521 | 
Bound-variable hypothesis builder for sum.  (Contributed by NM,
       11-Dec-2005.)  (Revised by Mario Carneiro, 13-Jun-2019.)
 | 
                         | 
|   | 
| Theorem | nfsum 11522 | 
Bound-variable hypothesis builder for sum: if   is (effectively) not
       free in   and
 , it is not free in
       .
       (Contributed by NM, 11-Dec-2005.)  (Revised by Mario Carneiro,
       13-Jun-2019.)
 | 
                                     | 
|   | 
| Theorem | sumdc 11523* | 
Decidability of a subset of upper integers.  (Contributed by Jim
       Kingdon, 1-Jan-2022.)
 | 
                                                             DECID                    
                    
 DECID  
      | 
|   | 
| Theorem | sumeq2 11524* | 
Equality theorem for sum.  (Contributed by NM, 11-Dec-2005.)  (Revised
       by Mario Carneiro, 13-Jul-2013.)
 | 
                    
        
           | 
|   | 
| Theorem | cbvsum 11525 | 
Change bound variable in a sum.  (Contributed by NM, 11-Dec-2005.)
         (Revised by Mario Carneiro, 13-Jun-2019.)
 | 
                                                                            
        
          | 
|   | 
| Theorem | cbvsumv 11526* | 
Change bound variable in a sum.  (Contributed by NM, 11-Dec-2005.)
       (Revised by Mario Carneiro, 13-Jul-2013.)
 | 
                                              | 
|   | 
| Theorem | cbvsumi 11527* | 
Change bound variable in a sum.  (Contributed by NM, 11-Dec-2005.)
 | 
                                      
                                | 
|   | 
| Theorem | sumeq1i 11528* | 
Equality inference for sum.  (Contributed by NM, 2-Jan-2006.)
 | 
                          
          | 
|   | 
| Theorem | sumeq2i 11529* | 
Equality inference for sum.  (Contributed by NM, 3-Dec-2005.)
 | 
                                              | 
|   | 
| Theorem | sumeq12i 11530* | 
Equality inference for sum.  (Contributed by FL, 10-Dec-2006.)
 | 
                                                  
          | 
|   | 
| Theorem | sumeq1d 11531* | 
Equality deduction for sum.  (Contributed by NM, 1-Nov-2005.)
 | 
                                                | 
|   | 
| Theorem | sumeq2d 11532* | 
Equality deduction for sum.  Note that unlike sumeq2dv 11533,   may
       occur in  .  (Contributed by NM, 1-Nov-2005.)
 | 
                                                       | 
|   | 
| Theorem | sumeq2dv 11533* | 
Equality deduction for sum.  (Contributed by NM, 3-Jan-2006.)  (Revised
       by Mario Carneiro, 31-Jan-2014.)
 | 
                                                          | 
|   | 
| Theorem | sumeq2ad 11534* | 
Equality deduction for sum.  (Contributed by Glauco Siliprandi,
       5-Apr-2020.)
 | 
                                                | 
|   | 
| Theorem | sumeq2sdv 11535* | 
Equality deduction for sum.  (Contributed by NM, 3-Jan-2006.)
 | 
                                                | 
|   | 
| Theorem | 2sumeq2dv 11536* | 
Equality deduction for double sum.  (Contributed by NM, 3-Jan-2006.)
       (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                                              
                  | 
|   | 
| Theorem | sumeq12dv 11537* | 
Equality deduction for sum.  (Contributed by NM, 1-Dec-2005.)
 | 
                                                        
                      | 
|   | 
| Theorem | sumeq12rdv 11538* | 
Equality deduction for sum.  (Contributed by NM, 1-Dec-2005.)
 | 
                                                        
                      | 
|   | 
| Theorem | sumfct 11539* | 
A lemma to facilitate conversions from the function form to the
       class-variable form of a sum.  (Contributed by Mario Carneiro,
       12-Aug-2013.)  (Revised by Jim Kingdon, 18-Sep-2022.)
 | 
                    
                    
             | 
|   | 
| Theorem | fz1f1o 11540* | 
A lemma for working with finite sums.  (Contributed by Mario Carneiro,
       22-Apr-2014.)
 | 
             
         ♯         
          ♯          | 
|   | 
| Theorem | nnf1o 11541 | 
Lemma for sum and product theorems.  (Contributed by Jim Kingdon,
       15-Aug-2022.)
 | 
           
                                                                                 | 
|   | 
| Theorem | sumrbdclem 11542* | 
Lemma for sumrbdc 11544.  (Contributed by Mario Carneiro,
12-Aug-2013.)
         (Revised by Jim Kingdon, 8-Apr-2023.)
 | 
                          
                                                              DECID                                                          
                      
               | 
|   | 
| Theorem | fsum3cvg 11543* | 
The sequence of partial sums of a finite sum converges to the whole
         sum.  (Contributed by Mario Carneiro, 20-Apr-2014.)  (Revised by Jim
         Kingdon, 12-Nov-2022.)
 | 
                          
                                                              DECID                                                                          
                         | 
|   | 
| Theorem | sumrbdc 11544* | 
Rebase the starting point of a sum.  (Contributed by Mario Carneiro,
         14-Jul-2013.)  (Revised by Jim Kingdon, 9-Apr-2023.)
 | 
                          
                                                                                                                                                     
 DECID  
                                
 DECID  
                               
                   
     | 
|   | 
| Theorem | summodclem3 11545* | 
Lemma for summodc 11548.  (Contributed by Mario Carneiro,
29-Mar-2014.)
         (Revised by Jim Kingdon, 9-Apr-2023.)
 | 
                          
                                                            
                                                                                         
    ![]_  ]_](_urbrack.gif)                                            
    ![]_  ]_](_urbrack.gif)                                      
      
            | 
|   | 
| Theorem | summodclem2a 11546* | 
Lemma for summodc 11548.  (Contributed by Mario Carneiro,
3-Apr-2014.)
         (Revised by Jim Kingdon, 9-Apr-2023.)
 | 
                          
                                                              DECID                                    ♯               ![]_  ]_](_urbrack.gif)                   
                  
           ![]_  ]_](_urbrack.gif)                                                                                                                            ♯                                 
                    | 
|   | 
| Theorem | summodclem2 11547* | 
Lemma for summodc 11548.  (Contributed by Mario Carneiro,
3-Apr-2014.)
         (Revised by Jim Kingdon, 4-May-2023.)
 | 
                          
                                                               ♯               ![]_  ]_](_urbrack.gif)                          
                          DECID              
                                                         
           | 
|   | 
| Theorem | summodc 11548* | 
A sum has at most one limit.  (Contributed by Mario Carneiro,
         3-Apr-2014.)  (Revised by Jim Kingdon, 4-May-2023.)
 | 
                          
                                                               ♯               ![]_  ]_](_urbrack.gif)                   
                 ♯           
    ![]_  ]_](_urbrack.gif)                                 
        
             DECID              
                 
                                         | 
|   | 
| Theorem | zsumdc 11549* | 
Series sum with index set a subset of the upper integers.
         (Contributed by Mario Carneiro, 13-Jun-2019.)  (Revised by Jim
         Kingdon, 8-Apr-2023.)
 | 
                                                                                                                       DECID                                                             
    
        
        | 
|   | 
| Theorem | isum 11550* | 
Series sum with an upper integer index set (i.e. an infinite series).
       (Contributed by Mario Carneiro, 15-Jul-2013.)  (Revised by Mario
       Carneiro, 7-Apr-2014.)
 | 
                                           
                                                                            
    
        
        | 
|   | 
| Theorem | fsumgcl 11551* | 
Closure for a function used to describe a sum over a nonempty finite
       set.  (Contributed by Jim Kingdon, 10-Oct-2022.)
 | 
                                  
                                                                         
             
                                          
      | 
|   | 
| Theorem | fsum3 11552* | 
The value of a sum over a nonempty finite set.  (Contributed by Jim
         Kingdon, 10-Oct-2022.)
 | 
                                  
                                                                         
             
                                                                        
          | 
|   | 
| Theorem | sum0 11553 | 
Any sum over the empty set is zero.  (Contributed by Mario Carneiro,
       12-Aug-2013.)  (Revised by Mario Carneiro, 20-Apr-2014.)
 | 
    
           | 
|   | 
| Theorem | isumz 11554* | 
Any sum of zero over a summable set is zero.  (Contributed by Mario
       Carneiro, 12-Aug-2013.)  (Revised by Jim Kingdon, 9-Apr-2023.)
 | 
                                   DECID                                 | 
|   | 
| Theorem | fsumf1o 11555* | 
Re-index a finite sum using a bijection.  (Contributed by Mario
       Carneiro, 20-Apr-2014.)
 | 
                              
                                                          
               
                                                     | 
|   | 
| Theorem | isumss 11556* | 
Change the index set to a subset in an upper integer sum.
         (Contributed by Mario Carneiro, 21-Apr-2014.)  (Revised by Jim
         Kingdon, 21-Sep-2022.)
 | 
                                                       
               
                                 DECID                    
                                                       DECID                    
                      | 
|   | 
| Theorem | fisumss 11557* | 
Change the index set to a subset in a finite sum.  (Contributed by Mario
       Carneiro, 21-Apr-2014.)  (Revised by Jim Kingdon, 23-Sep-2022.)
 | 
                                                       
               
                              DECID                                                              | 
|   | 
| Theorem | isumss2 11558* | 
Change the index set of a sum by adding zeroes.  The nonzero elements
       are in the contained set   and the added zeroes compose the rest of
       the containing set   which needs to be summable.  (Contributed by
       Mario Carneiro, 15-Jul-2013.)  (Revised by Jim Kingdon, 24-Sep-2022.)
 | 
                                  DECID                                                             
      
             DECID                                                                 | 
|   | 
| Theorem | fsum3cvg2 11559* | 
The sequence of partial sums of a finite sum converges to the whole sum.
       (Contributed by Mario Carneiro, 20-Apr-2014.)  (Revised by Jim Kingdon,
       2-Dec-2022.)
 | 
                    
            
                                                                              
               
 DECID  
                                                
                         | 
|   | 
| Theorem | fsumsersdc 11560* | 
Special case of series sum over a finite upper integer index set.
         (Contributed by Mario Carneiro, 26-Jul-2013.)  (Revised by Jim
         Kingdon, 5-May-2023.)
 | 
                    
            
                                                                              
               
 DECID  
                                                                       | 
|   | 
| Theorem | fsum3cvg3 11561* | 
A finite sum is convergent.  (Contributed by Mario Carneiro,
       24-Apr-2014.)  (Revised by Jim Kingdon, 2-Dec-2022.)
 | 
                                                                                                   DECID                                                  
                                                     
       
    
   | 
|   | 
| Theorem | fsum3ser 11562* | 
A finite sum expressed in terms of a partial sum of an infinite series.
       The recursive definition follows as fsum1 11577 and fsump1 11585, which should
       make our notation clear and from which, along with closure fsumcl 11565, we
       will derive the basic properties of finite sums.  (Contributed by NM,
       11-Dec-2005.)  (Revised by Jim Kingdon, 1-Oct-2022.)
 | 
                    
                                                              
                                
                    | 
|   | 
| Theorem | fsumcl2lem 11563* | 
- Lemma for finite sum closures.  (The "-" before "Lemma"
forces the
         math content to be displayed in the Statement List - NM 11-Feb-2008.)
         (Contributed by Mario Carneiro, 3-Jun-2014.)
 | 
                                      
      
                                               
                                                                  | 
|   | 
| Theorem | fsumcllem 11564* | 
- Lemma for finite sum closures.  (The "-" before "Lemma"
forces the
       math content to be displayed in the Statement List - NM 11-Feb-2008.)
       (Contributed by NM, 9-Nov-2005.)  (Revised by Mario Carneiro,
       3-Jun-2014.)
 | 
                                      
      
                                               
                                                                  | 
|   | 
| Theorem | fsumcl 11565* | 
Closure of a finite sum of complex numbers     .  (Contributed
         by NM, 9-Nov-2005.)  (Revised by Mario Carneiro, 22-Apr-2014.)
 | 
                                                                   
    | 
|   | 
| Theorem | fsumrecl 11566* | 
Closure of a finite sum of reals.  (Contributed by NM, 9-Nov-2005.)
         (Revised by Mario Carneiro, 22-Apr-2014.)
 | 
                                                                   
    | 
|   | 
| Theorem | fsumzcl 11567* | 
Closure of a finite sum of integers.  (Contributed by NM, 9-Nov-2005.)
         (Revised by Mario Carneiro, 22-Apr-2014.)
 | 
                                                                   
    | 
|   | 
| Theorem | fsumnn0cl 11568* | 
Closure of a finite sum of nonnegative integers.  (Contributed by
         Mario Carneiro, 23-Apr-2015.)
 | 
                                                                   
    | 
|   | 
| Theorem | fsumrpcl 11569* | 
Closure of a finite sum of positive reals.  (Contributed by Mario
       Carneiro, 3-Jun-2014.)
 | 
                                                                                       
    | 
|   | 
| Theorem | fsumzcl2 11570* | 
A finite sum with integer summands is an integer.  (Contributed by
       Alexander van der Vekens, 31-Aug-2018.)
 | 
                      
        
        
    | 
|   | 
| Theorem | fsumadd 11571* | 
The sum of two finite sums.  (Contributed by NM, 14-Nov-2005.)  (Revised
       by Mario Carneiro, 22-Apr-2014.)
 | 
                                                       
                                              
                          | 
|   | 
| Theorem | fsumsplit 11572* | 
Split a sum into two parts.  (Contributed by Mario Carneiro,
       18-Aug-2013.)  (Revised by Mario Carneiro, 22-Apr-2014.)
 | 
                                                                                                                           
        
            | 
|   | 
| Theorem | fsumsplitf 11573* | 
Split a sum into two parts.  A version of fsumsplit 11572 using
       bound-variable hypotheses instead of distinct variable conditions.
       (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 | 
                                                                                                                                       
        
            | 
|   | 
| Theorem | sumsnf 11574* | 
A sum of a singleton is the term.  A version of sumsn 11576 using
       bound-variable hypotheses instead of distinct variable conditions.
       (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 | 
                      
                                                  | 
|   | 
| Theorem | fsumsplitsn 11575* | 
Separate out a term in a finite sum.  (Contributed by Glauco Siliprandi,
       5-Apr-2020.)
 | 
                                                                                                                              
                                                              
        
     | 
|   | 
| Theorem | sumsn 11576* | 
A sum of a singleton is the term.  (Contributed by Mario Carneiro,
       22-Apr-2014.)
 | 
                                                            | 
|   | 
| Theorem | fsum1 11577* | 
The finite sum of      from       to   (i.e. a sum with
       only one term) is   i.e.     .  (Contributed by NM,
       8-Nov-2005.)  (Revised by Mario Carneiro, 21-Apr-2014.)
 | 
                                                              | 
|   | 
| Theorem | sumpr 11578* | 
A sum over a pair is the sum of the elements.  (Contributed by Thierry
       Arnoux, 12-Dec-2016.)
 | 
                            
                          
                                           
                                                  
       
     | 
|   | 
| Theorem | sumtp 11579* | 
A sum over a triple is the sum of the elements.  (Contributed by AV,
       24-Jul-2020.)
 | 
                            
                        
                          
                                                   
        
                                                                                                        
       | 
|   | 
| Theorem | sumsns 11580* | 
A sum of a singleton is the term.  (Contributed by Mario Carneiro,
       22-Apr-2014.)
 | 
                  ![]_  ]_](_urbrack.gif)  
                          ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | fsumm1 11581* | 
Separate out the last term in a finite sum.  (Contributed by Mario
         Carneiro, 26-Apr-2014.)
 | 
                                          
                          
                                
                            | 
|   | 
| Theorem | fzosump1 11582* | 
Separate out the last term in a finite sum.  (Contributed by Mario
         Carneiro, 13-Apr-2016.)
 | 
                                          
                          
                            ..^                    ..^   
       | 
|   | 
| Theorem | fsum1p 11583* | 
Separate out the first term in a finite sum.  (Contributed by NM,
       3-Jan-2006.)  (Revised by Mario Carneiro, 23-Apr-2014.)
 | 
                                          
                          
                                
       
                     | 
|   | 
| Theorem | fsumsplitsnun 11584* | 
Separate out a term in a finite sum by splitting the sum into two parts.
       (Contributed by Alexander van der Vekens, 1-Sep-2018.)  (Revised by AV,
       17-Dec-2021.)
 | 
                                                                          
        
       ![]_  ]_](_urbrack.gif)     | 
|   | 
| Theorem | fsump1 11585* | 
The addition of the next term in a finite sum of      is the
       current term plus   i.e.         .  (Contributed by NM,
       4-Nov-2005.)  (Revised by Mario Carneiro, 21-Apr-2014.)
 | 
                                           
                                     
                                 
           
                | 
|   | 
| Theorem | isumclim 11586* | 
An infinite sum equals the value its series converges to.
         (Contributed by NM, 25-Dec-2005.)  (Revised by Mario Carneiro,
         23-Apr-2014.)
 | 
                                           
                                                                              
                           
    | 
|   | 
| Theorem | isumclim2 11587* | 
A converging series converges to its infinite sum.  (Contributed by NM,
       2-Jan-2006.)  (Revised by Mario Carneiro, 23-Apr-2014.)
 | 
                                           
                                                                                                 
                        | 
|   | 
| Theorem | isumclim3 11588* | 
The sequence of partial finite sums of a converging infinite series
       converges to the infinite sum of the series.  Note that   must not
       occur in  . 
(Contributed by NM, 9-Jan-2006.)  (Revised by Mario
       Carneiro, 23-Apr-2014.)
 | 
                                                                                                                                                            | 
|   | 
| Theorem | sumnul 11589* | 
The sum of a non-convergent infinite series evaluates to the empty
         set.  (Contributed by Paul Chapman, 4-Nov-2007.)  (Revised by Mario
         Carneiro, 23-Apr-2014.)
 | 
                                           
                                                                   
               
                                | 
|   | 
| Theorem | isumcl 11590* | 
The sum of a converging infinite series is a complex number.
       (Contributed by NM, 13-Dec-2005.)  (Revised by Mario Carneiro,
       23-Apr-2014.)
 | 
                                           
                                                                                                 
               | 
|   | 
| Theorem | isummulc2 11591* | 
An infinite sum multiplied by a constant.  (Contributed by NM,
       12-Nov-2005.)  (Revised by Mario Carneiro, 23-Apr-2014.)
 | 
                                           
                                                                                                 
                                   
                   | 
|   | 
| Theorem | isummulc1 11592* | 
An infinite sum multiplied by a constant.  (Contributed by NM,
       13-Nov-2005.)  (Revised by Mario Carneiro, 23-Apr-2014.)
 | 
                                           
                                                                                                 
                                                      | 
|   | 
| Theorem | isumdivapc 11593* | 
An infinite sum divided by a constant.  (Contributed by NM, 2-Jan-2006.)
       (Revised by Mario Carneiro, 23-Apr-2014.)
 | 
                                           
                                                                                                 
                       #                                                  | 
|   | 
| Theorem | isumrecl 11594* | 
The sum of a converging infinite real series is a real number.
       (Contributed by Mario Carneiro, 24-Apr-2014.)
 | 
                                           
                                                                                                 
               | 
|   | 
| Theorem | isumge0 11595* | 
An infinite sum of nonnegative terms is nonnegative.  (Contributed by
       Mario Carneiro, 28-Apr-2014.)
 | 
                                           
                                                                                                                                      
        | 
|   | 
| Theorem | isumadd 11596* | 
Addition of infinite sums.  (Contributed by Mario Carneiro,
       18-Aug-2013.)  (Revised by Mario Carneiro, 23-Apr-2014.)
 | 
                                           
                                                                
                                                                                                 
               
                                
                          | 
|   | 
| Theorem | sumsplitdc 11597* | 
Split a sum into two parts.  (Contributed by Mario Carneiro,
       18-Aug-2013.)  (Revised by Mario Carneiro, 23-Apr-2014.)
 | 
                                                                              
                            
 DECID  
                            
 DECID  
                                                                
                                               
               
                                 
                     
               
                               
                          | 
|   | 
| Theorem | fsump1i 11598* | 
Optimized version of fsump1 11585 for making sums of a concrete number of
       terms.  (Contributed by Mario Carneiro, 23-Apr-2014.)
 | 
                                          
                                                                                                
                               
                       | 
|   | 
| Theorem | fsum2dlemstep 11599* | 
Lemma for fsum2d 11600- induction step.  (Contributed by Mario
Carneiro,
         23-Apr-2014.)  (Revised by Jim Kingdon, 8-Oct-2022.)
 | 
                                                      
                                           
      
                                            
                                                   
                          
                                                          
         
                        | 
|   | 
| Theorem | fsum2d 11600* | 
Write a double sum as a sum over a two-dimensional region.  Note that
            is a function of  .  (Contributed by Mario Carneiro,
       27-Apr-2014.)
 | 
                                                      
                                           
      
                                        
         
                 |