HomeHome Intuitionistic Logic Explorer
Theorem List (p. 116 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11501-11600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremclimcn1lem 11501* The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  H : CC --> CC   &    |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( H `  z )  -  ( H `  A ) ) )  <  x ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( H `
  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( H `  A ) )
 
Theoremclimabs 11502* Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( abs `  ( F `  k
 ) ) )   =>    |-  ( ph  ->  G  ~~>  ( abs `  A )
 )
 
Theoremclimcj 11503* Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( * `
  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( * `  A ) )
 
Theoremclimre 11504* Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( Re
 `  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( Re `  A ) )
 
Theoremclimim 11505* Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( Im
 `  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( Im `  A ) )
 
Theoremclimrecl 11506* The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremclimge0 11507* A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  ( F `
  k ) )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremclimadd 11508* Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  +  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  +  B ) )
 
Theoremclimmul 11509* Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  x.  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  x.  B ) )
 
Theoremclimsub 11510* Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  -  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  -  B ) )
 
Theoremclimaddc1 11511* Limit of a constant  C added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `  k )  +  C ) )   =>    |-  ( ph  ->  G  ~~>  ( A  +  C ) )
 
Theoremclimaddc2 11512* Limit of a constant  C added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  +  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  +  A ) )
 
Theoremclimmulc2 11513* Limit of a sequence multiplied by a constant  C. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  x.  A ) )
 
Theoremclimsubc1 11514* Limit of a constant  C subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `  k )  -  C ) )   =>    |-  ( ph  ->  G  ~~>  ( A  -  C ) )
 
Theoremclimsubc2 11515* Limit of a constant  C minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  -  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  -  A ) )
 
Theoremclimle 11516* Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremclimsqz 11517* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  <_  A )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclimsqz2 11518* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  <_  ( G `  k ) )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclim2ser 11519* The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq ( N  +  1 ) (  +  ,  F )  ~~>  ( A  -  (  seq M (  +  ,  F ) `  N ) ) )
 
Theoremclim2ser2 11520* The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq ( N  +  1 ) (  +  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  ( A  +  (  seq M (  +  ,  F ) `  N ) ) )
 
Theoremiserex 11521* An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
 
Theoremisermulc2 11522* Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  G ) 
 ~~>  ( C  x.  A ) )
 
Theoremclimlec2 11523* Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  F  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  <_  ( F `  k
 ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremiserle 11524* Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremiserge0 11525* The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  ( F `
  k ) )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremclimub 11526* The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  <_  ( F `  ( k  +  1 ) ) )   =>    |-  ( ph  ->  ( F `  N ) 
 <_  A )
 
Theoremclimserle 11527* The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  ( F `
  k ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  N )  <_  A )
 
Theoremiser3shft 11528* Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  ~~>  A  <->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  ~~>  A ) )
 
Theoremclimcau 11529* A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 11532). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  ) 
 ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
 
Theoremclimrecvg1n 11530* A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  <  ( C  /  n ) )   =>    |-  ( ph  ->  F  e.  dom  ~~>  )
 
Theoremclimcvg1nlem 11531* Lemma for climcvg1n 11532. We construct sequences of the real and imaginary parts of each term of  F, show those converge, and use that to show that  F converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
 |-  ( ph  ->  F : NN --> CC )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  <  ( C  /  n ) )   &    |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `  x ) ) )   &    |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
  x ) ) )   &    |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `
  x ) ) )   =>    |-  ( ph  ->  F  e.  dom  ~~>  )
 
Theoremclimcvg1n 11532* A Cauchy sequence of complex numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
 |-  ( ph  ->  F : NN --> CC )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  <  ( C  /  n ) )   =>    |-  ( ph  ->  F  e.  dom  ~~>  )
 
Theoremclimcaucn 11533* A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 11529 but adds the part that  ( F `  k ) is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  ) 
 ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
  k )  -  ( F `  j ) ) )  <  x ) )
 
Theoremserf0 11534* If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  F  ~~>  0 )
 
4.9.2  Finite and infinite sums
 
Syntaxcsu 11535 Extend class notation to include finite summations. (An underscore was added to the ASCII token in order to facilitate set.mm text searches, since "sum" is a commonly used word in comments.)
 class  sum_ k  e.  A  B
 
Definitiondf-sumdc 11536* Define the sum of a series with an index set of integers  A. The variable  k is normally a free variable in  B, i.e.,  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an  if expression so that we only need  B to be defined where  k  e.  A. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 } k means  1  +  2  +  4  =  7, and  sum_ k  e.  NN ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11704). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
 |- 
 sum_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>=
 `  m )DECID  j  e.  A  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
 ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  x  =  ( 
 seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m ) ) ) )
 
Theoremsumeq1 11537 Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
 |-  ( A  =  B  -> 
 sum_ k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremnfsum1 11538 Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
 |-  F/_ k A   =>    |-  F/_ k sum_ k  e.  A  B
 
Theoremnfsum 11539 Bound-variable hypothesis builder for sum: if  x is (effectively) not free in  A and  B, it is not free in  sum_ k  e.  A B. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x sum_ k  e.  A  B
 
Theoremsumdc 11540* Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. x  e.  ( ZZ>= `  M )DECID  x  e.  A )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  -> DECID  N  e.  A )
 
Theoremsumeq2 11541* Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( A. k  e.  A  B  =  C  -> 
 sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremcbvsum 11542 Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
 |-  ( j  =  k 
 ->  B  =  C )   &    |-  F/_ k A   &    |-  F/_ j A   &    |-  F/_ k B   &    |-  F/_ j C   =>    |- 
 sum_ j  e.  A  B  =  sum_ k  e.  A  C
 
Theoremcbvsumv 11543* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( j  =  k 
 ->  B  =  C )   =>    |-  sum_
 j  e.  A  B  =  sum_ k  e.  A  C
 
Theoremcbvsumi 11544* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
 |-  F/_ k B   &    |-  F/_ j C   &    |-  (
 j  =  k  ->  B  =  C )   =>    |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
 
Theoremsumeq1i 11545* Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
 |-  A  =  B   =>    |-  sum_ k  e.  A  C  =  sum_ k  e.  B  C
 
Theoremsumeq2i 11546* Equality inference for sum. (Contributed by NM, 3-Dec-2005.)
 |-  ( k  e.  A  ->  B  =  C )   =>    |-  sum_
 k  e.  A  B  =  sum_ k  e.  A  C
 
Theoremsumeq12i 11547* Equality inference for sum. (Contributed by FL, 10-Dec-2006.)
 |-  A  =  B   &    |-  (
 k  e.  A  ->  C  =  D )   =>    |-  sum_ k  e.  A  C  =  sum_ k  e.  B  D
 
Theoremsumeq1d 11548* Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremsumeq2d 11549* Equality deduction for sum. Note that unlike sumeq2dv 11550, 
k may occur in  ph. (Contributed by NM, 1-Nov-2005.)
 |-  ( ph  ->  A. k  e.  A  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremsumeq2dv 11550* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( ph  /\  k  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremsumeq2ad 11551* Equality deduction for sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremsumeq2sdv 11552* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theorem2sumeq2dv 11553* Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( ph  /\  j  e.  A  /\  k  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ j  e.  A  sum_ k  e.  B  D )
 
Theoremsumeq12dv 11554* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  =  D )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  D )
 
Theoremsumeq12rdv 11555* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  C  =  D )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  D )
 
Theoremsumfct 11556* A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
 |-  ( A. k  e.  A  B  e.  CC  -> 
 sum_ j  e.  A  ( ( k  e.  A  |->  B ) `  j )  =  sum_ k  e.  A  B )
 
Theoremfz1f1o 11557* A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
 ( `  A )  e. 
 NN  /\  E. f  f : ( 1 ... ( `  A )
 )
 -1-1-onto-> A ) ) )
 
Theoremnnf1o 11558 Lemma for sum and product theorems. (Contributed by Jim Kingdon, 15-Aug-2022.)
 |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )   &    |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )   &    |-  ( ph  ->  G : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  N  =  M )
 
Theoremsumrbdclem 11559* Lemma for sumrbdc 11561. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  +  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  +  ,  F ) )
 
Theoremfsum3cvg 11560* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremsumrbdc 11561* Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C )
 )
 
Theoremsummodclem3 11562* Lemma for summodc 11565. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  H  =  ( n  e.  NN  |->  if ( n  <_  N ,  [_ ( K `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ph  ->  (  seq 1 (  +  ,  G ) `  M )  =  (  seq 1 (  +  ,  H ) `  N ) )
 
Theoremsummodclem2a 11563* Lemma for summodc 11565. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  H  =  ( n  e.  NN  |->  if ( n  <_  N ,  [_ ( K `
  n )  /  k ]_ B ,  0 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  (  seq 1
 (  +  ,  G ) `  N ) )
 
Theoremsummodclem2 11564* Lemma for summodc 11565. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  y  =  ( 
 seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y ) )
 
Theoremsummodc 11565* A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) , 
 [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x )  \/  E. m  e.  NN  E. f
 ( f : ( 1 ... m ) -1-1-onto-> A 
 /\  x  =  ( 
 seq 1 (  +  ,  G ) `  m ) ) ) )
 
Theoremzsumdc 11566* Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 0 ) )   &    |-  ( ph  ->  A. x  e.  Z DECID  x  e.  A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
 
Theoremisum 11567* Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  Z  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
 
Theoremfsumgcl 11568* Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n )  e.  CC )
 
Theoremfsum3 11569* The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  ( 
 seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 )
 ) ) `  M ) )
 
Theoremsum0 11570 Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
 |- 
 sum_ k  e.  (/)  A  =  0
 
Theoremisumz 11571* Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A  0  =  0 )
 
Theoremfsumf1o 11572* Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
 |-  ( k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D )
 
Theoremisumss 11573* Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  0 )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremfisumss 11574* Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  0 )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  sum_
 k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremisumss2 11575* Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set  A and the added zeroes compose the rest of the containing set  B which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ph  ->  A. k  e.  A  C  e.  CC )   &    |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )   =>    |-  ( ph  ->  sum_
 k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
 
Theoremfsum3cvg2 11576* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremfsumsersdc 11577* Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  ( 
 seq M (  +  ,  F ) `  N ) )
 
Theoremfsum3cvg3 11578* A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
Theoremfsum3ser 11579* A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11594 and fsump1 11602, which should make our notation clear and from which, along with closure fsumcl 11582, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N ) )
 
Theoremfsumcl2lem 11580* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  S )
 
Theoremfsumcllem 11581* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  0  e.  S )   =>    |-  ( ph  ->  sum_
 k  e.  A  B  e.  S )
 
Theoremfsumcl 11582* Closure of a finite sum of complex numbers  A ( k ). (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  CC )
 
Theoremfsumrecl 11583* Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  RR )
 
Theoremfsumzcl 11584* Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ZZ )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  ZZ )
 
Theoremfsumnn0cl 11585* Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  NN0 )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  NN0 )
 
Theoremfsumrpcl 11586* Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR+ )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  RR+ )
 
Theoremfsumzcl2 11587* A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
 |-  ( ( A  e.  Fin  /\  A. k  e.  A  B  e.  ZZ )  -> 
 sum_ k  e.  A  B  e.  ZZ )
 
Theoremfsumadd 11588* The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  ( B  +  C )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
 
Theoremfsumsplit 11589* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U  C  =  (
 sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremfsumsplitf 11590* Split a sum into two parts. A version of fsumsplit 11589 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U  C  =  (
 sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremsumsnf 11591* A sum of a singleton is the term. A version of sumsn 11593 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  F/_ k B   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  sum_ k  e.  { M } A  =  B )
 
Theoremfsumsplitsn 11592* Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  sum_
 k  e.  ( A  u.  { B }
 ) C  =  (
 sum_ k  e.  A  C  +  D )
 )
 
Theoremsumsn 11593* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  sum_ k  e.  { M } A  =  B )
 
Theoremfsum1 11594* The finite sum of  A ( k ) from  k  =  M to  M (i.e. a sum with only one term) is  B i.e.  A ( M ). (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  ZZ  /\  B  e.  CC )  ->  sum_ k  e.  ( M ... M ) A  =  B )
 
Theoremsumpr 11595* A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
 |-  ( k  =  A  ->  C  =  D )   &    |-  ( k  =  B  ->  C  =  E )   &    |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC ) )   &    |-  ( ph  ->  ( A  e.  V  /\  B  e.  W )
 )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  sum_ k  e.  { A ,  B } C  =  ( D  +  E )
 )
 
Theoremsumtp 11596* A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
 |-  ( k  =  A  ->  D  =  E )   &    |-  ( k  =  B  ->  D  =  F )   &    |-  ( k  =  C  ->  D  =  G )   &    |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) )   &    |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X )
 )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  A  =/=  C )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F )  +  G ) )
 
Theoremsumsns 11597* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( ( M  e.  V  /\  [_ M  /  k ]_ A  e.  CC )  ->  sum_ k  e.  { M } A  =  [_ M  /  k ]_ A )
 
Theoremfsumm1 11598* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M
 ... ( N  -  1 ) ) A  +  B ) )
 
Theoremfzosump1 11599* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M..^ ( N  +  1 ) ) A  =  ( sum_ k  e.  ( M..^ N ) A  +  B ) )
 
Theoremfsum1p 11600* Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >