HomeHome Intuitionistic Logic Explorer
Theorem List (p. 116 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11501-11600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsumdc 11501* Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. x  e.  ( ZZ>= `  M )DECID  x  e.  A )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  -> DECID  N  e.  A )
 
Theoremsumeq2 11502* Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( A. k  e.  A  B  =  C  -> 
 sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremcbvsum 11503 Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
 |-  ( j  =  k 
 ->  B  =  C )   &    |-  F/_ k A   &    |-  F/_ j A   &    |-  F/_ k B   &    |-  F/_ j C   =>    |- 
 sum_ j  e.  A  B  =  sum_ k  e.  A  C
 
Theoremcbvsumv 11504* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( j  =  k 
 ->  B  =  C )   =>    |-  sum_
 j  e.  A  B  =  sum_ k  e.  A  C
 
Theoremcbvsumi 11505* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
 |-  F/_ k B   &    |-  F/_ j C   &    |-  (
 j  =  k  ->  B  =  C )   =>    |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
 
Theoremsumeq1i 11506* Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
 |-  A  =  B   =>    |-  sum_ k  e.  A  C  =  sum_ k  e.  B  C
 
Theoremsumeq2i 11507* Equality inference for sum. (Contributed by NM, 3-Dec-2005.)
 |-  ( k  e.  A  ->  B  =  C )   =>    |-  sum_
 k  e.  A  B  =  sum_ k  e.  A  C
 
Theoremsumeq12i 11508* Equality inference for sum. (Contributed by FL, 10-Dec-2006.)
 |-  A  =  B   &    |-  (
 k  e.  A  ->  C  =  D )   =>    |-  sum_ k  e.  A  C  =  sum_ k  e.  B  D
 
Theoremsumeq1d 11509* Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremsumeq2d 11510* Equality deduction for sum. Note that unlike sumeq2dv 11511, 
k may occur in  ph. (Contributed by NM, 1-Nov-2005.)
 |-  ( ph  ->  A. k  e.  A  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremsumeq2dv 11511* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( ph  /\  k  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremsumeq2ad 11512* Equality deduction for sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremsumeq2sdv 11513* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theorem2sumeq2dv 11514* Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( ph  /\  j  e.  A  /\  k  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ j  e.  A  sum_ k  e.  B  D )
 
Theoremsumeq12dv 11515* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  =  D )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  D )
 
Theoremsumeq12rdv 11516* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  C  =  D )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  D )
 
Theoremsumfct 11517* A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
 |-  ( A. k  e.  A  B  e.  CC  -> 
 sum_ j  e.  A  ( ( k  e.  A  |->  B ) `  j )  =  sum_ k  e.  A  B )
 
Theoremfz1f1o 11518* A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
 ( `  A )  e. 
 NN  /\  E. f  f : ( 1 ... ( `  A )
 )
 -1-1-onto-> A ) ) )
 
Theoremnnf1o 11519 Lemma for sum and product theorems. (Contributed by Jim Kingdon, 15-Aug-2022.)
 |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )   &    |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )   &    |-  ( ph  ->  G : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  N  =  M )
 
Theoremsumrbdclem 11520* Lemma for sumrbdc 11522. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  +  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  +  ,  F ) )
 
Theoremfsum3cvg 11521* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremsumrbdc 11522* Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C )
 )
 
Theoremsummodclem3 11523* Lemma for summodc 11526. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  H  =  ( n  e.  NN  |->  if ( n  <_  N ,  [_ ( K `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ph  ->  (  seq 1 (  +  ,  G ) `  M )  =  (  seq 1 (  +  ,  H ) `  N ) )
 
Theoremsummodclem2a 11524* Lemma for summodc 11526. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  H  =  ( n  e.  NN  |->  if ( n  <_  N ,  [_ ( K `
  n )  /  k ]_ B ,  0 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  (  seq 1
 (  +  ,  G ) `  N ) )
 
Theoremsummodclem2 11525* Lemma for summodc 11526. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  y  =  ( 
 seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y ) )
 
Theoremsummodc 11526* A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) , 
 [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x )  \/  E. m  e.  NN  E. f
 ( f : ( 1 ... m ) -1-1-onto-> A 
 /\  x  =  ( 
 seq 1 (  +  ,  G ) `  m ) ) ) )
 
Theoremzsumdc 11527* Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 0 ) )   &    |-  ( ph  ->  A. x  e.  Z DECID  x  e.  A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
 
Theoremisum 11528* Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  Z  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
 
Theoremfsumgcl 11529* Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n )  e.  CC )
 
Theoremfsum3 11530* The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  ( 
 seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 )
 ) ) `  M ) )
 
Theoremsum0 11531 Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
 |- 
 sum_ k  e.  (/)  A  =  0
 
Theoremisumz 11532* Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A  0  =  0 )
 
Theoremfsumf1o 11533* Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
 |-  ( k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D )
 
Theoremisumss 11534* Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  0 )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremfisumss 11535* Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  0 )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  sum_
 k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremisumss2 11536* Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set  A and the added zeroes compose the rest of the containing set  B which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ph  ->  A. k  e.  A  C  e.  CC )   &    |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )   =>    |-  ( ph  ->  sum_
 k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
 
Theoremfsum3cvg2 11537* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremfsumsersdc 11538* Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  ( 
 seq M (  +  ,  F ) `  N ) )
 
Theoremfsum3cvg3 11539* A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
Theoremfsum3ser 11540* A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11555 and fsump1 11563, which should make our notation clear and from which, along with closure fsumcl 11543, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N ) )
 
Theoremfsumcl2lem 11541* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  S )
 
Theoremfsumcllem 11542* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  0  e.  S )   =>    |-  ( ph  ->  sum_
 k  e.  A  B  e.  S )
 
Theoremfsumcl 11543* Closure of a finite sum of complex numbers  A ( k ). (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  CC )
 
Theoremfsumrecl 11544* Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  RR )
 
Theoremfsumzcl 11545* Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ZZ )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  ZZ )
 
Theoremfsumnn0cl 11546* Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  NN0 )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  NN0 )
 
Theoremfsumrpcl 11547* Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR+ )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  RR+ )
 
Theoremfsumzcl2 11548* A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
 |-  ( ( A  e.  Fin  /\  A. k  e.  A  B  e.  ZZ )  -> 
 sum_ k  e.  A  B  e.  ZZ )
 
Theoremfsumadd 11549* The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  ( B  +  C )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
 
Theoremfsumsplit 11550* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U  C  =  (
 sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremfsumsplitf 11551* Split a sum into two parts. A version of fsumsplit 11550 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U  C  =  (
 sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremsumsnf 11552* A sum of a singleton is the term. A version of sumsn 11554 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  F/_ k B   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  sum_ k  e.  { M } A  =  B )
 
Theoremfsumsplitsn 11553* Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  sum_
 k  e.  ( A  u.  { B }
 ) C  =  (
 sum_ k  e.  A  C  +  D )
 )
 
Theoremsumsn 11554* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  sum_ k  e.  { M } A  =  B )
 
Theoremfsum1 11555* The finite sum of  A ( k ) from  k  =  M to  M (i.e. a sum with only one term) is  B i.e.  A ( M ). (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  ZZ  /\  B  e.  CC )  ->  sum_ k  e.  ( M ... M ) A  =  B )
 
Theoremsumpr 11556* A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
 |-  ( k  =  A  ->  C  =  D )   &    |-  ( k  =  B  ->  C  =  E )   &    |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC ) )   &    |-  ( ph  ->  ( A  e.  V  /\  B  e.  W )
 )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  sum_ k  e.  { A ,  B } C  =  ( D  +  E )
 )
 
Theoremsumtp 11557* A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
 |-  ( k  =  A  ->  D  =  E )   &    |-  ( k  =  B  ->  D  =  F )   &    |-  ( k  =  C  ->  D  =  G )   &    |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) )   &    |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X )
 )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  A  =/=  C )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F )  +  G ) )
 
Theoremsumsns 11558* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( ( M  e.  V  /\  [_ M  /  k ]_ A  e.  CC )  ->  sum_ k  e.  { M } A  =  [_ M  /  k ]_ A )
 
Theoremfsumm1 11559* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M
 ... ( N  -  1 ) ) A  +  B ) )
 
Theoremfzosump1 11560* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M..^ ( N  +  1 ) ) A  =  ( sum_ k  e.  ( M..^ N ) A  +  B ) )
 
Theoremfsum1p 11561* Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
 
Theoremfsumsplitsnun 11562* Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
 |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A ) 
 /\  A. k  e.  ( A  u.  { Z }
 ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { Z }
 ) B  =  (
 sum_ k  e.  A  B  +  [_ Z  /  k ]_ B ) )
 
Theoremfsump1 11563* The addition of the next term in a finite sum of  A ( k ) is the current term plus  B i.e.  A ( N  +  1 ). (Contributed by NM, 4-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 sum_ k  e.  ( M ... N ) A  +  B ) )
 
Theoremisumclim 11564* An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  B )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  B )
 
Theoremisumclim2 11565* A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_
 k  e.  Z  A )
 
Theoremisumclim3 11566* The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that  j must not occur in  A. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  dom  ~~>  )   &    |-  ( ( ph  /\  k  e.  Z )  ->  A  e.  CC )   &    |-  ( ( ph  /\  j  e.  Z ) 
 ->  ( F `  j
 )  =  sum_ k  e.  ( M ... j
 ) A )   =>    |-  ( ph  ->  F  ~~>  sum_
 k  e.  Z  A )
 
Theoremsumnul 11567* The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  -.  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  (/) )
 
Theoremisumcl 11568* The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  e.  CC )
 
Theoremisummulc2 11569* An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( B  x.  sum_ k  e.  Z  A )  =  sum_ k  e.  Z  ( B  x.  A ) )
 
Theoremisummulc1 11570* An infinite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( sum_ k  e.  Z  A  x.  B )  =  sum_ k  e.  Z  ( A  x.  B ) )
 
Theoremisumdivapc 11571* An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( sum_ k  e.  Z  A  /  B )  =  sum_ k  e.  Z  ( A 
 /  B ) )
 
Theoremisumrecl 11572* The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  e.  RR )
 
Theoremisumge0 11573* An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ( ph  /\  k  e.  Z )  ->  0  <_  A )   =>    |-  ( ph  ->  0  <_ 
 sum_ k  e.  Z  A )
 
Theoremisumadd 11574* Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq M (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  ( A  +  B )  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
 
Theoremsumsplitdc 11575* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  ( A  u.  B )  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z )  -> DECID  k  e.  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
 0 ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
 0 ) )   &    |-  (
 ( ph  /\  k  e.  ( A  u.  B ) )  ->  C  e.  CC )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq M (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremfsump1i 11576* Optimized version of fsump1 11563 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  N  =  ( K  +  1 )   &    |-  ( k  =  N  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  A  e.  CC )   &    |-  ( ph  ->  ( K  e.  Z  /\  sum_
 k  e.  ( M
 ... K ) A  =  S ) )   &    |-  ( ph  ->  ( S  +  B )  =  T )   =>    |-  ( ph  ->  ( N  e.  Z  /\  sum_
 k  e.  ( M
 ... N ) A  =  T ) )
 
Theoremfsum2dlemstep 11577* Lemma for fsum2d 11578- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   &    |-  ( ph  ->  -.  y  e.  x )   &    |-  ( ph  ->  ( x  u.  { y } )  C_  A )   &    |-  ( ph  ->  x  e.  Fin )   &    |-  ( ps 
 <-> 
 sum_ j  e.  x  sum_
 k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )   =>    |-  ( ( ph  /\  ps )  ->  sum_ j  e.  ( x  u.  { y }
 ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  { y }
 ) ( { j }  X.  B ) D )
 
Theoremfsum2d 11578* Write a double sum as a sum over a two-dimensional region. Note that  B ( j ) is a function of  j. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
 
Theoremfsumxp 11579* Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  ( A  X.  B ) D )
 
Theoremfsumcnv 11580* Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  ( x  =  <. j ,  k >.  ->  B  =  D )   &    |-  ( y  = 
 <. k ,  j >.  ->  C  =  D )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  Rel  A )   &    |-  ( ( ph  /\  x  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ x  e.  A  B  =  sum_ y  e.  `'  A C )
 
Theoremfisumcom2 11581* Interchange order of summation. Note that  B ( j ) and  D
( k ) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  k  e.  C ) 
 ->  D  e.  Fin )   &    |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  B )  <->  ( k  e.  C  /\  j  e.  D ) ) )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  E  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  E  =  sum_ k  e.  C  sum_ j  e.  D  E )
 
Theoremfsumcom 11582* Interchange order of summation. (Contributed by NM, 15-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_
 k  e.  B  C  =  sum_ k  e.  B  sum_
 j  e.  A  C )
 
Theoremfsum0diaglem 11583* Lemma for fisum0diag 11584. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
 |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  (
 0 ... ( N  -  j ) ) ) 
 ->  ( k  e.  (
 0 ... N )  /\  j  e.  ( 0 ... ( N  -  k
 ) ) ) )
 
Theoremfisum0diag 11584* Two ways to express "the sum of  A ( j ,  k ) over the triangular region  M  <_  j,  M  <_  k,  j  +  k  <_  N". (Contributed by NM, 31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
 |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  sum_ j  e.  ( 0 ... N ) sum_ k  e.  (
 0 ... ( N  -  j ) ) A  =  sum_ k  e.  (
 0 ... N ) sum_ j  e.  ( 0 ... ( N  -  k
 ) ) A )
 
Theoremmptfzshft 11585* 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  (
 j  e.  ( ( M  +  K )
 ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K )
 ... ( N  +  K ) ) -1-1-onto-> ( M
 ... N ) )
 
Theoremfsumrev 11586* Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( K  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M ) ) B )
 
Theoremfsumshft 11587* Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV, 8-Sep-2019.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  -  K )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K ) ) B )
 
Theoremfsumshftm 11588* Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  +  K )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K ) ) B )
 
Theoremfisumrev2 11589* Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( ( M  +  N )  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N ) B )
 
Theoremfisum0diag2 11590* Two ways to express "the sum of  A ( j ,  k ) over the triangular region  0  <_  j, 
0  <_  k,  j  +  k  <_  N". (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( x  =  k 
 ->  B  =  A )   &    |-  ( x  =  (
 k  -  j ) 
 ->  B  =  C )   &    |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  sum_ j  e.  ( 0 ... N ) sum_ k  e.  (
 0 ... ( N  -  j ) ) A  =  sum_ k  e.  (
 0 ... N ) sum_ j  e.  ( 0 ... k ) C )
 
Theoremfsummulc2 11591* A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B ) )
 
Theoremfsummulc1 11592* A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  x.  C )  =  sum_ k  e.  A  ( B  x.  C ) )
 
Theoremfsumdivapc 11593* A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  /  C )  =  sum_ k  e.  A  ( B 
 /  C ) )
 
Theoremfsumneg 11594* Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  -u B  =  -u sum_ k  e.  A  B )
 
Theoremfsumsub 11595* Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  ( B  -  C )  =  ( sum_ k  e.  A  B  -  sum_ k  e.  A  C ) )
 
Theoremfsum2mul 11596* Separate the nested sum of the product  C ( j )  x.  D ( k ). (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  C  e.  CC )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  D  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_
 k  e.  B  ( C  x.  D )  =  ( sum_ j  e.  A  C  x.  sum_ k  e.  B  D ) )
 
Theoremfsumconst 11597* The sum of constant terms ( k is not free in  B). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
 sum_ k  e.  A  B  =  ( ( `  A )  x.  B ) )
 
Theoremfsumdifsnconst 11598* The sum of constant terms ( k is not free in  C) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  CC )  -> 
 sum_ k  e.  ( A  \  { B }
 ) C  =  ( ( ( `  A )  -  1 )  x.  C ) )
 
Theoremmodfsummodlem1 11599* Lemma for modfsummod 11601. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
 |-  ( A. k  e.  ( A  u.  {
 z } ) B  e.  ZZ  ->  [_ z  /  k ]_ B  e.  ZZ )
 
Theoremmodfsummodlemstep 11600* Induction step for modfsummod 11601. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  A. k  e.  ( A  u.  { z }
 ) B  e.  ZZ )   &    |-  ( ph  ->  -.  z  e.  A )   &    |-  ( ph  ->  (
 sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N ) 
 mod  N ) )   =>    |-  ( ph  ->  (
 sum_ k  e.  ( A  u.  { z }
 ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N ) 
 mod  N ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >