ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1 Unicode version

Theorem prodeq1 12059
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
Assertion
Ref Expression
prodeq1  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
Distinct variable groups:    A, k    B, k
Allowed substitution hint:    C( k)

Proof of Theorem prodeq1
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ k A
2 nfcv 2372 . 2  |-  F/_ k B
31, 2prodeq1f 12058 1  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   prod_cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-seqfrec 10665  df-proddc 12057
This theorem is referenced by:  prodeq1i  12067  prodeq1d  12070  prod1dc  12092  fprodf1o  12094  fprodssdc  12096  fprodmul  12097  fprodcl2lem  12111  fprodcllem  12112  fprodconst  12126  fprodap0  12127  fprod2d  12129  fprodrec  12135  fprodap0f  12142  fprodle  12146  fprodmodd  12147
  Copyright terms: Public domain W3C validator