ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1 Unicode version

Theorem prodeq1 11564
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
Assertion
Ref Expression
prodeq1  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
Distinct variable groups:    A, k    B, k
Allowed substitution hint:    C( k)

Proof of Theorem prodeq1
StepHypRef Expression
1 nfcv 2319 . 2  |-  F/_ k A
2 nfcv 2319 . 2  |-  F/_ k B
31, 2prodeq1f 11563 1  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   prod_cprod 11561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-recs 6309  df-frec 6395  df-seqfrec 10449  df-proddc 11562
This theorem is referenced by:  prodeq1i  11572  prodeq1d  11575  prod1dc  11597  fprodf1o  11599  fprodssdc  11601  fprodmul  11602  fprodcl2lem  11616  fprodcllem  11617  fprodconst  11631  fprodap0  11632  fprod2d  11634  fprodrec  11640  fprodap0f  11647  fprodle  11651  fprodmodd  11652
  Copyright terms: Public domain W3C validator