ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1 Unicode version

Theorem prodeq1 11864
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
Assertion
Ref Expression
prodeq1  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
Distinct variable groups:    A, k    B, k
Allowed substitution hint:    C( k)

Proof of Theorem prodeq1
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ k A
2 nfcv 2348 . 2  |-  F/_ k B
31, 2prodeq1f 11863 1  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   prod_cprod 11861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-seqfrec 10593  df-proddc 11862
This theorem is referenced by:  prodeq1i  11872  prodeq1d  11875  prod1dc  11897  fprodf1o  11899  fprodssdc  11901  fprodmul  11902  fprodcl2lem  11916  fprodcllem  11917  fprodconst  11931  fprodap0  11932  fprod2d  11934  fprodrec  11940  fprodap0f  11947  fprodle  11951  fprodmodd  11952
  Copyright terms: Public domain W3C validator