ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvprodi Unicode version

Theorem cbvprodi 11742
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
cbvprodi.1  |-  F/_ k B
cbvprodi.2  |-  F/_ j C
cbvprodi.3  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvprodi  |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
Distinct variable group:    j, k, A
Allowed substitution hints:    B( j, k)    C( j, k)

Proof of Theorem cbvprodi
StepHypRef Expression
1 cbvprodi.3 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2339 . 2  |-  F/_ k A
3 nfcv 2339 . 2  |-  F/_ j A
4 cbvprodi.1 . 2  |-  F/_ k B
5 cbvprodi.2 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvprod 11740 1  |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   F/_wnfc 2326   prod_cprod 11732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-seqfrec 10557  df-proddc 11733
This theorem is referenced by:  prodfct  11769  prodsnf  11774  fprodm1s  11783  fprodp1s  11784  prodsns  11785  fprodcllemf  11795  fprod2dlemstep  11804  fprodcom2fi  11808  fproddivapf  11813  fprodsplitf  11814
  Copyright terms: Public domain W3C validator