ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvprodi Unicode version

Theorem cbvprodi 11523
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
cbvprodi.1  |-  F/_ k B
cbvprodi.2  |-  F/_ j C
cbvprodi.3  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvprodi  |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
Distinct variable group:    j, k, A
Allowed substitution hints:    B( j, k)    C( j, k)

Proof of Theorem cbvprodi
StepHypRef Expression
1 cbvprodi.3 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2312 . 2  |-  F/_ k A
3 nfcv 2312 . 2  |-  F/_ j A
4 cbvprodi.1 . 2  |-  F/_ k B
5 cbvprodi.2 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvprod 11521 1  |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   F/_wnfc 2299   prod_cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-seqfrec 10402  df-proddc 11514
This theorem is referenced by:  prodfct  11550  prodsnf  11555  fprodm1s  11564  fprodp1s  11565  prodsns  11566  fprodcllemf  11576  fprod2dlemstep  11585  fprodcom2fi  11589  fproddivapf  11594  fprodsplitf  11595
  Copyright terms: Public domain W3C validator