Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodeq1i | GIF version |
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
prodeq1i | ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | prodeq1 11529 | . 2 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∏cprod 11526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-if 3533 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-recs 6296 df-frec 6382 df-seqfrec 10416 df-proddc 11527 |
This theorem is referenced by: prodeq12i 11539 fprodfac 11591 fprodxp 11600 |
Copyright terms: Public domain | W3C validator |