ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1i GIF version

Theorem prodeq1i 12080
Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
prodeq1i 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodeq1i
StepHypRef Expression
1 prodeq1i.1 . 2 𝐴 = 𝐵
2 prodeq1 12072 . 2 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
31, 2ax-mp 5 1 𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cprod 12069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-recs 6457  df-frec 6543  df-seqfrec 10678  df-proddc 12070
This theorem is referenced by:  prodeq12i  12082  fprodfac  12134  fprodxp  12143
  Copyright terms: Public domain W3C validator