| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recexre | Unicode version | ||
| Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| recexre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8107 |
. . . 4
| |
| 2 | reapval 8684 |
. . . 4
| |
| 3 | 1, 2 | mpan2 425 |
. . 3
|
| 4 | lt0neg1 8576 |
. . . . . . . . . 10
| |
| 5 | renegcl 8368 |
. . . . . . . . . . 11
| |
| 6 | ltxrlt 8173 |
. . . . . . . . . . 11
| |
| 7 | 1, 5, 6 | sylancr 414 |
. . . . . . . . . 10
|
| 8 | 4, 7 | bitrd 188 |
. . . . . . . . 9
|
| 9 | 8 | pm5.32i 454 |
. . . . . . . 8
|
| 10 | ax-precex 8070 |
. . . . . . . . . 10
| |
| 11 | simpr 110 |
. . . . . . . . . . 11
| |
| 12 | 11 | reximi 2605 |
. . . . . . . . . 10
|
| 13 | 10, 12 | syl 14 |
. . . . . . . . 9
|
| 14 | 5, 13 | sylan 283 |
. . . . . . . 8
|
| 15 | 9, 14 | sylbi 121 |
. . . . . . 7
|
| 16 | recn 8093 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | negnegd 8409 |
. . . . . . . . . . . 12
|
| 18 | 17 | oveq2d 5983 |
. . . . . . . . . . 11
|
| 19 | 18 | eqeq1d 2216 |
. . . . . . . . . 10
|
| 20 | 19 | pm5.32i 454 |
. . . . . . . . 9
|
| 21 | renegcl 8368 |
. . . . . . . . . 10
| |
| 22 | negeq 8300 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | oveq2d 5983 |
. . . . . . . . . . . 12
|
| 24 | 23 | eqeq1d 2216 |
. . . . . . . . . . 11
|
| 25 | 24 | rspcev 2884 |
. . . . . . . . . 10
|
| 26 | 21, 25 | sylan 283 |
. . . . . . . . 9
|
| 27 | 20, 26 | sylbir 135 |
. . . . . . . 8
|
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 15, 28 | rexlimddv 2630 |
. . . . . 6
|
| 30 | recn 8093 |
. . . . . . . . . 10
| |
| 31 | recn 8093 |
. . . . . . . . . 10
| |
| 32 | mul2neg 8505 |
. . . . . . . . . 10
| |
| 33 | 30, 31, 32 | syl2an 289 |
. . . . . . . . 9
|
| 34 | 33 | eqeq1d 2216 |
. . . . . . . 8
|
| 35 | 34 | rexbidva 2505 |
. . . . . . 7
|
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | 29, 36 | mpbid 147 |
. . . . 5
|
| 38 | 37 | ex 115 |
. . . 4
|
| 39 | ltxrlt 8173 |
. . . . . . . 8
| |
| 40 | 1, 39 | mpan 424 |
. . . . . . 7
|
| 41 | 40 | pm5.32i 454 |
. . . . . 6
|
| 42 | ax-precex 8070 |
. . . . . . 7
| |
| 43 | simpr 110 |
. . . . . . . 8
| |
| 44 | 43 | reximi 2605 |
. . . . . . 7
|
| 45 | 42, 44 | syl 14 |
. . . . . 6
|
| 46 | 41, 45 | sylbi 121 |
. . . . 5
|
| 47 | 46 | ex 115 |
. . . 4
|
| 48 | 38, 47 | jaod 719 |
. . 3
|
| 49 | 3, 48 | sylbid 150 |
. 2
|
| 50 | 49 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-sub 8280 df-neg 8281 df-reap 8683 |
| This theorem is referenced by: rimul 8693 recexap 8761 rerecclap 8838 |
| Copyright terms: Public domain | W3C validator |