ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexre Unicode version

Theorem recexre 8476
Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
recexre  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
Distinct variable group:    x, A

Proof of Theorem recexre
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 0re 7899 . . . 4  |-  0  e.  RR
2 reapval 8474 . . . 4  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  ( A  <  0  \/  0  < 
A ) ) )
31, 2mpan2 422 . . 3  |-  ( A  e.  RR  ->  ( A #  0 
<->  ( A  <  0  \/  0  <  A ) ) )
4 lt0neg1 8366 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
5 renegcl 8159 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -u A  e.  RR )
6 ltxrlt 7964 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  -u A  e.  RR )  ->  ( 0  <  -u A  <->  0  <RR  -u A
) )
71, 5, 6sylancr 411 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
0  <  -u A  <->  0  <RR  -u A ) )
84, 7bitrd 187 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <RR  -u A ) )
98pm5.32i 450 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  0 )  <->  ( A  e.  RR  /\  0  <RR  -u A ) )
10 ax-precex 7863 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  0  <RR  -u A )  ->  E. y  e.  RR  ( 0  <RR  y  /\  ( -u A  x.  y
)  =  1 ) )
11 simpr 109 . . . . . . . . . . 11  |-  ( ( 0  <RR  y  /\  ( -u A  x.  y )  =  1 )  -> 
( -u A  x.  y
)  =  1 )
1211reximi 2563 . . . . . . . . . 10  |-  ( E. y  e.  RR  (
0  <RR  y  /\  ( -u A  x.  y )  =  1 )  ->  E. y  e.  RR  ( -u A  x.  y
)  =  1 )
1310, 12syl 14 . . . . . . . . 9  |-  ( (
-u A  e.  RR  /\  0  <RR  -u A )  ->  E. y  e.  RR  ( -u A  x.  y
)  =  1 )
145, 13sylan 281 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <RR  -u A )  ->  E. y  e.  RR  ( -u A  x.  y
)  =  1 )
159, 14sylbi 120 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  <  0 )  ->  E. y  e.  RR  ( -u A  x.  y
)  =  1 )
16 recn 7886 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  y  e.  CC )
1716negnegd 8200 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  -u -u y  =  y )
1817oveq2d 5858 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  ( -u A  x.  -u -u y
)  =  ( -u A  x.  y )
)
1918eqeq1d 2174 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
( -u A  x.  -u -u y
)  =  1  <->  ( -u A  x.  y )  =  1 ) )
2019pm5.32i 450 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  ( -u A  x.  -u -u y
)  =  1 )  <-> 
( y  e.  RR  /\  ( -u A  x.  y )  =  1 ) )
21 renegcl 8159 . . . . . . . . . 10  |-  ( y  e.  RR  ->  -u y  e.  RR )
22 negeq 8091 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  -u x  =  -u -u y )
2322oveq2d 5858 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  ( -u A  x.  -u x
)  =  ( -u A  x.  -u -u y
) )
2423eqeq1d 2174 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
( -u A  x.  -u x
)  =  1  <->  ( -u A  x.  -u -u y
)  =  1 ) )
2524rspcev 2830 . . . . . . . . . 10  |-  ( (
-u y  e.  RR  /\  ( -u A  x.  -u -u y )  =  1 )  ->  E. x  e.  RR  ( -u A  x.  -u x )  =  1 )
2621, 25sylan 281 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  ( -u A  x.  -u -u y
)  =  1 )  ->  E. x  e.  RR  ( -u A  x.  -u x
)  =  1 )
2720, 26sylbir 134 . . . . . . . 8  |-  ( ( y  e.  RR  /\  ( -u A  x.  y
)  =  1 )  ->  E. x  e.  RR  ( -u A  x.  -u x
)  =  1 )
2827adantl 275 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( y  e.  RR  /\  ( -u A  x.  y )  =  1 ) )  ->  E. x  e.  RR  ( -u A  x.  -u x
)  =  1 )
2915, 28rexlimddv 2588 . . . . . 6  |-  ( ( A  e.  RR  /\  A  <  0 )  ->  E. x  e.  RR  ( -u A  x.  -u x
)  =  1 )
30 recn 7886 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
31 recn 7886 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
32 mul2neg 8296 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( -u A  x.  -u x )  =  ( A  x.  x ) )
3330, 31, 32syl2an 287 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u A  x.  -u x )  =  ( A  x.  x ) )
3433eqeq1d 2174 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( -u A  x.  -u x )  =  1  <->  ( A  x.  x )  =  1 ) )
3534rexbidva 2463 . . . . . . 7  |-  ( A  e.  RR  ->  ( E. x  e.  RR  ( -u A  x.  -u x
)  =  1  <->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
3635adantr 274 . . . . . 6  |-  ( ( A  e.  RR  /\  A  <  0 )  -> 
( E. x  e.  RR  ( -u A  x.  -u x )  =  1  <->  E. x  e.  RR  ( A  x.  x
)  =  1 ) )
3729, 36mpbid 146 . . . . 5  |-  ( ( A  e.  RR  /\  A  <  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
3837ex 114 . . . 4  |-  ( A  e.  RR  ->  ( A  <  0  ->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
39 ltxrlt 7964 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
401, 39mpan 421 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
4140pm5.32i 450 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  <->  ( A  e.  RR  /\  0  <RR  A ) )
42 ax-precex 7863 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
43 simpr 109 . . . . . . . 8  |-  ( ( 0  <RR  x  /\  ( A  x.  x )  =  1 )  -> 
( A  x.  x
)  =  1 )
4443reximi 2563 . . . . . . 7  |-  ( E. x  e.  RR  (
0  <RR  x  /\  ( A  x.  x )  =  1 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4542, 44syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4641, 45sylbi 120 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4746ex 114 . . . 4  |-  ( A  e.  RR  ->  (
0  <  A  ->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
4838, 47jaod 707 . . 3  |-  ( A  e.  RR  ->  (
( A  <  0  \/  0  <  A )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 ) )
493, 48sylbid 149 . 2  |-  ( A  e.  RR  ->  ( A #  0  ->  E. x  e.  RR  ( A  x.  x
)  =  1 ) )
5049imp 123 1  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    <RR cltrr 7757    x. cmul 7758    < clt 7933   -ucneg 8070   # creap 8472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072  df-reap 8473
This theorem is referenced by:  rimul  8483  recexap  8550  rerecclap  8626
  Copyright terms: Public domain W3C validator