ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexre Unicode version

Theorem recexre 8525
Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
recexre  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
Distinct variable group:    x, A

Proof of Theorem recexre
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 0re 7948 . . . 4  |-  0  e.  RR
2 reapval 8523 . . . 4  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  ( A  <  0  \/  0  < 
A ) ) )
31, 2mpan2 425 . . 3  |-  ( A  e.  RR  ->  ( A #  0 
<->  ( A  <  0  \/  0  <  A ) ) )
4 lt0neg1 8415 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
5 renegcl 8208 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -u A  e.  RR )
6 ltxrlt 8013 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  -u A  e.  RR )  ->  ( 0  <  -u A  <->  0  <RR  -u A
) )
71, 5, 6sylancr 414 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
0  <  -u A  <->  0  <RR  -u A ) )
84, 7bitrd 188 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <RR  -u A ) )
98pm5.32i 454 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  0 )  <->  ( A  e.  RR  /\  0  <RR  -u A ) )
10 ax-precex 7912 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  0  <RR  -u A )  ->  E. y  e.  RR  ( 0  <RR  y  /\  ( -u A  x.  y
)  =  1 ) )
11 simpr 110 . . . . . . . . . . 11  |-  ( ( 0  <RR  y  /\  ( -u A  x.  y )  =  1 )  -> 
( -u A  x.  y
)  =  1 )
1211reximi 2574 . . . . . . . . . 10  |-  ( E. y  e.  RR  (
0  <RR  y  /\  ( -u A  x.  y )  =  1 )  ->  E. y  e.  RR  ( -u A  x.  y
)  =  1 )
1310, 12syl 14 . . . . . . . . 9  |-  ( (
-u A  e.  RR  /\  0  <RR  -u A )  ->  E. y  e.  RR  ( -u A  x.  y
)  =  1 )
145, 13sylan 283 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <RR  -u A )  ->  E. y  e.  RR  ( -u A  x.  y
)  =  1 )
159, 14sylbi 121 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  <  0 )  ->  E. y  e.  RR  ( -u A  x.  y
)  =  1 )
16 recn 7935 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  y  e.  CC )
1716negnegd 8249 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  -u -u y  =  y )
1817oveq2d 5885 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  ( -u A  x.  -u -u y
)  =  ( -u A  x.  y )
)
1918eqeq1d 2186 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
( -u A  x.  -u -u y
)  =  1  <->  ( -u A  x.  y )  =  1 ) )
2019pm5.32i 454 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  ( -u A  x.  -u -u y
)  =  1 )  <-> 
( y  e.  RR  /\  ( -u A  x.  y )  =  1 ) )
21 renegcl 8208 . . . . . . . . . 10  |-  ( y  e.  RR  ->  -u y  e.  RR )
22 negeq 8140 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  -u x  =  -u -u y )
2322oveq2d 5885 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  ( -u A  x.  -u x
)  =  ( -u A  x.  -u -u y
) )
2423eqeq1d 2186 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
( -u A  x.  -u x
)  =  1  <->  ( -u A  x.  -u -u y
)  =  1 ) )
2524rspcev 2841 . . . . . . . . . 10  |-  ( (
-u y  e.  RR  /\  ( -u A  x.  -u -u y )  =  1 )  ->  E. x  e.  RR  ( -u A  x.  -u x )  =  1 )
2621, 25sylan 283 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  ( -u A  x.  -u -u y
)  =  1 )  ->  E. x  e.  RR  ( -u A  x.  -u x
)  =  1 )
2720, 26sylbir 135 . . . . . . . 8  |-  ( ( y  e.  RR  /\  ( -u A  x.  y
)  =  1 )  ->  E. x  e.  RR  ( -u A  x.  -u x
)  =  1 )
2827adantl 277 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( y  e.  RR  /\  ( -u A  x.  y )  =  1 ) )  ->  E. x  e.  RR  ( -u A  x.  -u x
)  =  1 )
2915, 28rexlimddv 2599 . . . . . 6  |-  ( ( A  e.  RR  /\  A  <  0 )  ->  E. x  e.  RR  ( -u A  x.  -u x
)  =  1 )
30 recn 7935 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
31 recn 7935 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
32 mul2neg 8345 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( -u A  x.  -u x )  =  ( A  x.  x ) )
3330, 31, 32syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u A  x.  -u x )  =  ( A  x.  x ) )
3433eqeq1d 2186 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( -u A  x.  -u x )  =  1  <->  ( A  x.  x )  =  1 ) )
3534rexbidva 2474 . . . . . . 7  |-  ( A  e.  RR  ->  ( E. x  e.  RR  ( -u A  x.  -u x
)  =  1  <->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
3635adantr 276 . . . . . 6  |-  ( ( A  e.  RR  /\  A  <  0 )  -> 
( E. x  e.  RR  ( -u A  x.  -u x )  =  1  <->  E. x  e.  RR  ( A  x.  x
)  =  1 ) )
3729, 36mpbid 147 . . . . 5  |-  ( ( A  e.  RR  /\  A  <  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
3837ex 115 . . . 4  |-  ( A  e.  RR  ->  ( A  <  0  ->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
39 ltxrlt 8013 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
401, 39mpan 424 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
4140pm5.32i 454 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  <->  ( A  e.  RR  /\  0  <RR  A ) )
42 ax-precex 7912 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
43 simpr 110 . . . . . . . 8  |-  ( ( 0  <RR  x  /\  ( A  x.  x )  =  1 )  -> 
( A  x.  x
)  =  1 )
4443reximi 2574 . . . . . . 7  |-  ( E. x  e.  RR  (
0  <RR  x  /\  ( A  x.  x )  =  1 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4542, 44syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4641, 45sylbi 121 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4746ex 115 . . . 4  |-  ( A  e.  RR  ->  (
0  <  A  ->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
4838, 47jaod 717 . . 3  |-  ( A  e.  RR  ->  (
( A  <  0  \/  0  <  A )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 ) )
493, 48sylbid 150 . 2  |-  ( A  e.  RR  ->  ( A #  0  ->  E. x  e.  RR  ( A  x.  x
)  =  1 ) )
5049imp 124 1  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4000  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    <RR cltrr 7806    x. cmul 7807    < clt 7982   -ucneg 8119   # creap 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-ltxr 7987  df-sub 8120  df-neg 8121  df-reap 8522
This theorem is referenced by:  rimul  8532  recexap  8599  rerecclap  8676
  Copyright terms: Public domain W3C validator