| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recexre | Unicode version | ||
| Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| recexre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8146 |
. . . 4
| |
| 2 | reapval 8723 |
. . . 4
| |
| 3 | 1, 2 | mpan2 425 |
. . 3
|
| 4 | lt0neg1 8615 |
. . . . . . . . . 10
| |
| 5 | renegcl 8407 |
. . . . . . . . . . 11
| |
| 6 | ltxrlt 8212 |
. . . . . . . . . . 11
| |
| 7 | 1, 5, 6 | sylancr 414 |
. . . . . . . . . 10
|
| 8 | 4, 7 | bitrd 188 |
. . . . . . . . 9
|
| 9 | 8 | pm5.32i 454 |
. . . . . . . 8
|
| 10 | ax-precex 8109 |
. . . . . . . . . 10
| |
| 11 | simpr 110 |
. . . . . . . . . . 11
| |
| 12 | 11 | reximi 2627 |
. . . . . . . . . 10
|
| 13 | 10, 12 | syl 14 |
. . . . . . . . 9
|
| 14 | 5, 13 | sylan 283 |
. . . . . . . 8
|
| 15 | 9, 14 | sylbi 121 |
. . . . . . 7
|
| 16 | recn 8132 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | negnegd 8448 |
. . . . . . . . . . . 12
|
| 18 | 17 | oveq2d 6017 |
. . . . . . . . . . 11
|
| 19 | 18 | eqeq1d 2238 |
. . . . . . . . . 10
|
| 20 | 19 | pm5.32i 454 |
. . . . . . . . 9
|
| 21 | renegcl 8407 |
. . . . . . . . . 10
| |
| 22 | negeq 8339 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | oveq2d 6017 |
. . . . . . . . . . . 12
|
| 24 | 23 | eqeq1d 2238 |
. . . . . . . . . . 11
|
| 25 | 24 | rspcev 2907 |
. . . . . . . . . 10
|
| 26 | 21, 25 | sylan 283 |
. . . . . . . . 9
|
| 27 | 20, 26 | sylbir 135 |
. . . . . . . 8
|
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 15, 28 | rexlimddv 2653 |
. . . . . 6
|
| 30 | recn 8132 |
. . . . . . . . . 10
| |
| 31 | recn 8132 |
. . . . . . . . . 10
| |
| 32 | mul2neg 8544 |
. . . . . . . . . 10
| |
| 33 | 30, 31, 32 | syl2an 289 |
. . . . . . . . 9
|
| 34 | 33 | eqeq1d 2238 |
. . . . . . . 8
|
| 35 | 34 | rexbidva 2527 |
. . . . . . 7
|
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | 29, 36 | mpbid 147 |
. . . . 5
|
| 38 | 37 | ex 115 |
. . . 4
|
| 39 | ltxrlt 8212 |
. . . . . . . 8
| |
| 40 | 1, 39 | mpan 424 |
. . . . . . 7
|
| 41 | 40 | pm5.32i 454 |
. . . . . 6
|
| 42 | ax-precex 8109 |
. . . . . . 7
| |
| 43 | simpr 110 |
. . . . . . . 8
| |
| 44 | 43 | reximi 2627 |
. . . . . . 7
|
| 45 | 42, 44 | syl 14 |
. . . . . 6
|
| 46 | 41, 45 | sylbi 121 |
. . . . 5
|
| 47 | 46 | ex 115 |
. . . 4
|
| 48 | 38, 47 | jaod 722 |
. . 3
|
| 49 | 3, 48 | sylbid 150 |
. 2
|
| 50 | 49 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-sub 8319 df-neg 8320 df-reap 8722 |
| This theorem is referenced by: rimul 8732 recexap 8800 rerecclap 8877 |
| Copyright terms: Public domain | W3C validator |