Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recexre | Unicode version |
Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.) |
Ref | Expression |
---|---|
recexre | #ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7899 | . . . 4 | |
2 | reapval 8474 | . . . 4 #ℝ | |
3 | 1, 2 | mpan2 422 | . . 3 #ℝ |
4 | lt0neg1 8366 | . . . . . . . . . 10 | |
5 | renegcl 8159 | . . . . . . . . . . 11 | |
6 | ltxrlt 7964 | . . . . . . . . . . 11 | |
7 | 1, 5, 6 | sylancr 411 | . . . . . . . . . 10 |
8 | 4, 7 | bitrd 187 | . . . . . . . . 9 |
9 | 8 | pm5.32i 450 | . . . . . . . 8 |
10 | ax-precex 7863 | . . . . . . . . . 10 | |
11 | simpr 109 | . . . . . . . . . . 11 | |
12 | 11 | reximi 2563 | . . . . . . . . . 10 |
13 | 10, 12 | syl 14 | . . . . . . . . 9 |
14 | 5, 13 | sylan 281 | . . . . . . . 8 |
15 | 9, 14 | sylbi 120 | . . . . . . 7 |
16 | recn 7886 | . . . . . . . . . . . . 13 | |
17 | 16 | negnegd 8200 | . . . . . . . . . . . 12 |
18 | 17 | oveq2d 5858 | . . . . . . . . . . 11 |
19 | 18 | eqeq1d 2174 | . . . . . . . . . 10 |
20 | 19 | pm5.32i 450 | . . . . . . . . 9 |
21 | renegcl 8159 | . . . . . . . . . 10 | |
22 | negeq 8091 | . . . . . . . . . . . . 13 | |
23 | 22 | oveq2d 5858 | . . . . . . . . . . . 12 |
24 | 23 | eqeq1d 2174 | . . . . . . . . . . 11 |
25 | 24 | rspcev 2830 | . . . . . . . . . 10 |
26 | 21, 25 | sylan 281 | . . . . . . . . 9 |
27 | 20, 26 | sylbir 134 | . . . . . . . 8 |
28 | 27 | adantl 275 | . . . . . . 7 |
29 | 15, 28 | rexlimddv 2588 | . . . . . 6 |
30 | recn 7886 | . . . . . . . . . 10 | |
31 | recn 7886 | . . . . . . . . . 10 | |
32 | mul2neg 8296 | . . . . . . . . . 10 | |
33 | 30, 31, 32 | syl2an 287 | . . . . . . . . 9 |
34 | 33 | eqeq1d 2174 | . . . . . . . 8 |
35 | 34 | rexbidva 2463 | . . . . . . 7 |
36 | 35 | adantr 274 | . . . . . 6 |
37 | 29, 36 | mpbid 146 | . . . . 5 |
38 | 37 | ex 114 | . . . 4 |
39 | ltxrlt 7964 | . . . . . . . 8 | |
40 | 1, 39 | mpan 421 | . . . . . . 7 |
41 | 40 | pm5.32i 450 | . . . . . 6 |
42 | ax-precex 7863 | . . . . . . 7 | |
43 | simpr 109 | . . . . . . . 8 | |
44 | 43 | reximi 2563 | . . . . . . 7 |
45 | 42, 44 | syl 14 | . . . . . 6 |
46 | 41, 45 | sylbi 120 | . . . . 5 |
47 | 46 | ex 114 | . . . 4 |
48 | 38, 47 | jaod 707 | . . 3 |
49 | 3, 48 | sylbid 149 | . 2 #ℝ |
50 | 49 | imp 123 | 1 #ℝ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wrex 2445 class class class wbr 3982 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 cltrr 7757 cmul 7758 clt 7933 cneg 8070 #ℝ creap 8472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-sub 8071 df-neg 8072 df-reap 8473 |
This theorem is referenced by: rimul 8483 recexap 8550 rerecclap 8626 |
Copyright terms: Public domain | W3C validator |