Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recexre | Unicode version |
Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.) |
Ref | Expression |
---|---|
recexre | #ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7857 | . . . 4 | |
2 | reapval 8430 | . . . 4 #ℝ | |
3 | 1, 2 | mpan2 422 | . . 3 #ℝ |
4 | lt0neg1 8322 | . . . . . . . . . 10 | |
5 | renegcl 8115 | . . . . . . . . . . 11 | |
6 | ltxrlt 7922 | . . . . . . . . . . 11 | |
7 | 1, 5, 6 | sylancr 411 | . . . . . . . . . 10 |
8 | 4, 7 | bitrd 187 | . . . . . . . . 9 |
9 | 8 | pm5.32i 450 | . . . . . . . 8 |
10 | ax-precex 7821 | . . . . . . . . . 10 | |
11 | simpr 109 | . . . . . . . . . . 11 | |
12 | 11 | reximi 2551 | . . . . . . . . . 10 |
13 | 10, 12 | syl 14 | . . . . . . . . 9 |
14 | 5, 13 | sylan 281 | . . . . . . . 8 |
15 | 9, 14 | sylbi 120 | . . . . . . 7 |
16 | recn 7844 | . . . . . . . . . . . . 13 | |
17 | 16 | negnegd 8156 | . . . . . . . . . . . 12 |
18 | 17 | oveq2d 5830 | . . . . . . . . . . 11 |
19 | 18 | eqeq1d 2163 | . . . . . . . . . 10 |
20 | 19 | pm5.32i 450 | . . . . . . . . 9 |
21 | renegcl 8115 | . . . . . . . . . 10 | |
22 | negeq 8047 | . . . . . . . . . . . . 13 | |
23 | 22 | oveq2d 5830 | . . . . . . . . . . . 12 |
24 | 23 | eqeq1d 2163 | . . . . . . . . . . 11 |
25 | 24 | rspcev 2813 | . . . . . . . . . 10 |
26 | 21, 25 | sylan 281 | . . . . . . . . 9 |
27 | 20, 26 | sylbir 134 | . . . . . . . 8 |
28 | 27 | adantl 275 | . . . . . . 7 |
29 | 15, 28 | rexlimddv 2576 | . . . . . 6 |
30 | recn 7844 | . . . . . . . . . 10 | |
31 | recn 7844 | . . . . . . . . . 10 | |
32 | mul2neg 8252 | . . . . . . . . . 10 | |
33 | 30, 31, 32 | syl2an 287 | . . . . . . . . 9 |
34 | 33 | eqeq1d 2163 | . . . . . . . 8 |
35 | 34 | rexbidva 2451 | . . . . . . 7 |
36 | 35 | adantr 274 | . . . . . 6 |
37 | 29, 36 | mpbid 146 | . . . . 5 |
38 | 37 | ex 114 | . . . 4 |
39 | ltxrlt 7922 | . . . . . . . 8 | |
40 | 1, 39 | mpan 421 | . . . . . . 7 |
41 | 40 | pm5.32i 450 | . . . . . 6 |
42 | ax-precex 7821 | . . . . . . 7 | |
43 | simpr 109 | . . . . . . . 8 | |
44 | 43 | reximi 2551 | . . . . . . 7 |
45 | 42, 44 | syl 14 | . . . . . 6 |
46 | 41, 45 | sylbi 120 | . . . . 5 |
47 | 46 | ex 114 | . . . 4 |
48 | 38, 47 | jaod 707 | . . 3 |
49 | 3, 48 | sylbid 149 | . 2 #ℝ |
50 | 49 | imp 123 | 1 #ℝ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1332 wcel 2125 wrex 2433 class class class wbr 3961 (class class class)co 5814 cc 7709 cr 7710 cc0 7711 c1 7712 cltrr 7715 cmul 7716 clt 7891 cneg 8026 #ℝ creap 8428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-ltxr 7896 df-sub 8027 df-neg 8028 df-reap 8429 |
This theorem is referenced by: rimul 8439 recexap 8506 rerecclap 8582 |
Copyright terms: Public domain | W3C validator |