Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reaplt | Unicode version |
Description: Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.) |
Ref | Expression |
---|---|
reaplt | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | apreap 8493 | . 2 # #ℝ | |
2 | reapval 8482 | . 2 #ℝ | |
3 | 1, 2 | bitrd 187 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wcel 2141 class class class wbr 3987 cr 7760 clt 7941 #ℝ creap 8480 # cap 8487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-ltxr 7946 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 |
This theorem is referenced by: reapltxor 8495 1ap0 8496 reapmul1lem 8500 reapmul1 8501 reapadd1 8502 reapneg 8503 reapcotr 8504 remulext1 8505 apsqgt0 8507 apsym 8512 msqge0 8522 mulge0 8525 leltap 8531 gt0ap0 8532 ltleap 8538 ltap 8539 ap0gt0 8546 recexaplem2 8557 zapne 9273 qlttri2 9587 apbtwnz 10217 sq11ap 10630 nn0opthd 10643 recvguniq 10946 sqrt11ap 10989 ltabs 11038 reopnap 13291 dedekindeu 13354 dedekindicclemicc 13363 ivthinc 13374 reapef 13452 coseq0q4123 13508 cos11 13527 logrpap0b 13550 triap 14021 trirec0 14036 apdifflemf 14038 neapmkvlem 14058 |
Copyright terms: Public domain | W3C validator |