| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reaplt | Unicode version | ||
| Description: Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.) |
| Ref | Expression |
|---|---|
| reaplt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | apreap 8631 |
. 2
| |
| 2 | reapval 8620 |
. 2
| |
| 3 | 1, 2 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 |
| This theorem is referenced by: reapltxor 8633 1ap0 8634 reapmul1lem 8638 reapmul1 8639 reapadd1 8640 reapneg 8641 reapcotr 8642 remulext1 8643 apsqgt0 8645 apsym 8650 msqge0 8660 mulge0 8663 leltap 8669 gt0ap0 8670 ltleap 8676 ltap 8677 ap0gt0 8684 recexaplem2 8696 zapne 9417 qlttri2 9732 apbtwnz 10381 sq11ap 10816 nn0opthd 10831 recvguniq 11177 sqrt11ap 11220 ltabs 11269 sinltxirr 11943 reopnap 14866 dedekindeu 14943 dedekindicclemicc 14952 ivthinc 14963 reapef 15098 coseq0q4123 15154 cos11 15173 logrpap0b 15196 triap 15760 trirec0 15775 apdifflemf 15777 neapmkvlem 15798 |
| Copyright terms: Public domain | W3C validator |