| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reaplt | Unicode version | ||
| Description: Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.) |
| Ref | Expression |
|---|---|
| reaplt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | apreap 8690 |
. 2
| |
| 2 | reapval 8679 |
. 2
| |
| 3 | 1, 2 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 |
| This theorem is referenced by: reapltxor 8692 1ap0 8693 reapmul1lem 8697 reapmul1 8698 reapadd1 8699 reapneg 8700 reapcotr 8701 remulext1 8702 apsqgt0 8704 apsym 8709 msqge0 8719 mulge0 8722 leltap 8728 gt0ap0 8729 ltleap 8735 ltap 8736 ap0gt0 8743 recexaplem2 8755 zapne 9477 qlttri2 9792 apbtwnz 10449 sq11ap 10884 nn0opthd 10899 recvguniq 11391 sqrt11ap 11434 ltabs 11483 sinltxirr 12157 reopnap 15103 dedekindeu 15180 dedekindicclemicc 15189 ivthinc 15200 reapef 15335 coseq0q4123 15391 cos11 15410 logrpap0b 15433 triap 16140 trirec0 16155 apdifflemf 16157 neapmkvlem 16178 |
| Copyright terms: Public domain | W3C validator |