ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvexb Unicode version

Theorem relcnvexb 5160
Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.)
Assertion
Ref Expression
relcnvexb  |-  ( Rel 
R  ->  ( R  e.  _V  <->  `' R  e.  _V ) )

Proof of Theorem relcnvexb
StepHypRef Expression
1 cnvexg 5158 . 2  |-  ( R  e.  _V  ->  `' R  e.  _V )
2 dfrel2 5071 . . 3  |-  ( Rel 
R  <->  `' `' R  =  R
)
3 cnvexg 5158 . . . 4  |-  ( `' R  e.  _V  ->  `' `' R  e.  _V )
4 eleq1 2238 . . . 4  |-  ( `' `' R  =  R  ->  ( `' `' R  e.  _V  <->  R  e.  _V ) )
53, 4syl5ib 154 . . 3  |-  ( `' `' R  =  R  ->  ( `' R  e. 
_V  ->  R  e.  _V ) )
62, 5sylbi 121 . 2  |-  ( Rel 
R  ->  ( `' R  e.  _V  ->  R  e.  _V ) )
71, 6impbid2 143 1  |-  ( Rel 
R  ->  ( R  e.  _V  <->  `' R  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   _Vcvv 2735   `'ccnv 4619   Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628  df-dm 4630  df-rn 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator