ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvexb GIF version

Theorem relcnvexb 5241
Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.)
Assertion
Ref Expression
relcnvexb (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))

Proof of Theorem relcnvexb
StepHypRef Expression
1 cnvexg 5239 . 2 (𝑅 ∈ V → 𝑅 ∈ V)
2 dfrel2 5152 . . 3 (Rel 𝑅𝑅 = 𝑅)
3 cnvexg 5239 . . . 4 (𝑅 ∈ V → 𝑅 ∈ V)
4 eleq1 2270 . . . 4 (𝑅 = 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
53, 4imbitrid 154 . . 3 (𝑅 = 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
62, 5sylbi 121 . 2 (Rel 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
71, 6impbid2 143 1 (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2178  Vcvv 2776  ccnv 4692  Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator