Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relcnvexb | GIF version |
Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.) |
Ref | Expression |
---|---|
relcnvexb | ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 5141 | . 2 ⊢ (𝑅 ∈ V → ◡𝑅 ∈ V) | |
2 | dfrel2 5054 | . . 3 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
3 | cnvexg 5141 | . . . 4 ⊢ (◡𝑅 ∈ V → ◡◡𝑅 ∈ V) | |
4 | eleq1 2229 | . . . 4 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ V ↔ 𝑅 ∈ V)) | |
5 | 3, 4 | syl5ib 153 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
6 | 2, 5 | sylbi 120 | . 2 ⊢ (Rel 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
7 | 1, 6 | impbid2 142 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ◡ccnv 4603 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |