![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcnvexb | GIF version |
Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.) |
Ref | Expression |
---|---|
relcnvexb | ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 5204 | . 2 ⊢ (𝑅 ∈ V → ◡𝑅 ∈ V) | |
2 | dfrel2 5117 | . . 3 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
3 | cnvexg 5204 | . . . 4 ⊢ (◡𝑅 ∈ V → ◡◡𝑅 ∈ V) | |
4 | eleq1 2256 | . . . 4 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ V ↔ 𝑅 ∈ V)) | |
5 | 3, 4 | imbitrid 154 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
6 | 2, 5 | sylbi 121 | . 2 ⊢ (Rel 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
7 | 1, 6 | impbid2 143 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ◡ccnv 4659 Rel wrel 4665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |