| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relcnvexb | GIF version | ||
| Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.) |
| Ref | Expression |
|---|---|
| relcnvexb | ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvexg 5266 | . 2 ⊢ (𝑅 ∈ V → ◡𝑅 ∈ V) | |
| 2 | dfrel2 5179 | . . 3 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
| 3 | cnvexg 5266 | . . . 4 ⊢ (◡𝑅 ∈ V → ◡◡𝑅 ∈ V) | |
| 4 | eleq1 2292 | . . . 4 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ V ↔ 𝑅 ∈ V)) | |
| 5 | 3, 4 | imbitrid 154 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
| 6 | 2, 5 | sylbi 121 | . 2 ⊢ (Rel 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
| 7 | 1, 6 | impbid2 143 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ◡ccnv 4718 Rel wrel 4724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-dm 4729 df-rn 4730 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |