ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvexb GIF version

Theorem relcnvexb 5268
Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.)
Assertion
Ref Expression
relcnvexb (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))

Proof of Theorem relcnvexb
StepHypRef Expression
1 cnvexg 5266 . 2 (𝑅 ∈ V → 𝑅 ∈ V)
2 dfrel2 5179 . . 3 (Rel 𝑅𝑅 = 𝑅)
3 cnvexg 5266 . . . 4 (𝑅 ∈ V → 𝑅 ∈ V)
4 eleq1 2292 . . . 4 (𝑅 = 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
53, 4imbitrid 154 . . 3 (𝑅 = 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
62, 5sylbi 121 . 2 (Rel 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
71, 6impbid2 143 1 (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  ccnv 4718  Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator