HomeHome Intuitionistic Logic Explorer
Theorem List (p. 126 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12501-12600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-ocomp 12501 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 oc  = Slot ; 1 1
 
Definitiondf-ds 12502 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 dist  = Slot ; 1 2
 
Definitiondf-unif 12503 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |- 
 UnifSet  = Slot ; 1 3
 
Definitiondf-hom 12504 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- 
 Hom  = Slot ; 1 4
 
Definitiondf-cco 12505 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- comp  = Slot ; 1
 5
 
Theoremstrleund 12506 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  ( ph  ->  F Struct  <. A ,  B >. )   &    |-  ( ph  ->  G Struct  <. C ,  D >. )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  ( F  u.  G ) Struct  <. A ,  D >. )
 
Theoremstrleun 12507 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  F Struct  <. A ,  B >.   &    |-  G Struct 
 <. C ,  D >.   &    |-  B  <  C   =>    |-  ( F  u.  G ) Struct 
 <. A ,  D >.
 
Theoremstrle1g 12508 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  I  e.  NN   &    |-  A  =  I   =>    |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
 
Theoremstrle2g 12509 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  I  e.  NN   &    |-  A  =  I   &    |-  I  <  J   &    |-  J  e.  NN   &    |-  B  =  J   =>    |-  (
 ( X  e.  V  /\  Y  e.  W ) 
 ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
 
Theoremstrle3g 12510 Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  I  e.  NN   &    |-  A  =  I   &    |-  I  <  J   &    |-  J  e.  NN   &    |-  B  =  J   &    |-  J  <  K   &    |-  K  e.  NN   &    |-  C  =  K   =>    |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P ) 
 ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )
 
Theoremplusgndx 12511 Index value of the df-plusg 12493 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( +g  `  ndx )  =  2
 
Theoremplusgid 12512 Utility theorem: index-independent form of df-plusg 12493. (Contributed by NM, 20-Oct-2012.)
 |- 
 +g  = Slot  ( +g  ` 
 ndx )
 
Theoremplusgslid 12513 Slot property of  +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
 |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e. 
 NN )
 
Theoremopelstrsl 12514 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  <. ( E `  ndx ) ,  V >.  e.  S )   =>    |-  ( ph  ->  V  =  ( E `  S ) )
 
Theoremopelstrbas 12515 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
 |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  <. ( Base `  ndx ) ,  V >.  e.  S )   =>    |-  ( ph  ->  V  =  ( Base `  S )
 )
 
Theorem1strstrg 12516 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. }   =>    |-  ( B  e.  V  ->  G Struct  <. 1 ,  1
 >. )
 
Theorem1strbas 12517 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. }   =>    |-  ( B  e.  V  ->  B  =  ( Base `  G ) )
 
Theorem2strstrg 12518 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. 1 ,  N >. )
 
Theorem2strbasg 12519 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  B  =  ( Base `  G ) )
 
Theorem2stropg 12520 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  .+  =  ( E `
  G ) )
 
Theorem2strstr1g 12521 A constructed two-slot structure. Version of 2strstrg 12518 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. ( Base `  ndx ) ,  N >. )
 
Theorem2strbas1g 12522 The base set of a constructed two-slot structure. Version of 2strbasg 12519 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  B  =  ( Base `  G ) )
 
Theorem2strop1g 12523 The other slot of a constructed two-slot structure. Version of 2stropg 12520 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   &    |-  E  = Slot  N   =>    |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( E `  G ) )
 
Theorembasendxnplusgndx 12524 The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.)
 |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
 
Theoremgrpstrg 12525 A constructed group is a structure on 
1 ... 2. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W )  ->  G Struct  <. 1 ,  2 >. )
 
Theoremgrpbaseg 12526 The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  =  (
 Base `  G ) )
 
Theoremgrpplusgg 12527 The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( +g  `  G ) )
 
Theoremmulrndx 12528 Index value of the df-mulr 12494 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( .r `  ndx )  =  3
 
Theoremmulrid 12529 Utility theorem: index-independent form of df-mulr 12494. (Contributed by Mario Carneiro, 8-Jun-2013.)
 |- 
 .r  = Slot  ( .r ` 
 ndx )
 
Theoremmulrslid 12530 Slot property of  .r. (Contributed by Jim Kingdon, 3-Feb-2023.)
 |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
 
Theoremplusgndxnmulrndx 12531 The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
 |-  ( +g  `  ndx )  =/=  ( .r `  ndx )
 
Theorembasendxnmulrndx 12532 The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
 |-  ( Base `  ndx )  =/=  ( .r `  ndx )
 
Theoremrngstrg 12533 A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  R Struct  <. 1 ,  3 >. )
 
Theoremrngbaseg 12534 The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  B  =  ( Base `  R )
 )
 
Theoremrngplusgg 12535 The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  .+  =  ( +g  `  R )
 )
 
Theoremrngmulrg 12536 The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  .x.  =  ( .r `  R ) )
 
Theoremstarvndx 12537 Index value of the df-starv 12495 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( *r `  ndx )  =  4
 
Theoremstarvid 12538 Utility theorem: index-independent form of df-starv 12495. (Contributed by Mario Carneiro, 6-Oct-2013.)
 |-  *r  = Slot  ( *r `  ndx )
 
Theoremstarvslid 12539 Slot property of  *r. (Contributed by Jim Kingdon, 4-Feb-2023.)
 |-  ( *r  = Slot 
 ( *r `  ndx )  /\  ( *r `  ndx )  e.  NN )
 
Theoremsrngstrd 12540 A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  R Struct  <. 1 ,  4 >.
 )
 
Theoremsrngbased 12541 The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  B  =  ( Base `  R ) )
 
Theoremsrngplusgd 12542 The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  .+  =  ( +g  `  R ) )
 
Theoremsrngmulrd 12543 The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  .x. 
 =  ( .r `  R ) )
 
Theoremsrnginvld 12544 The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  .*  =  ( *r `
  R ) )
 
Theoremscandx 12545 Index value of the df-sca 12496 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  (Scalar `  ndx )  =  5
 
Theoremscaid 12546 Utility theorem: index-independent form of scalar df-sca 12496. (Contributed by Mario Carneiro, 19-Jun-2014.)
 |- Scalar  = Slot  (Scalar `  ndx )
 
Theoremscaslid 12547 Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
 |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
 
Theoremvscandx 12548 Index value of the df-vsca 12497 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( .s `  ndx )  =  6
 
Theoremvscaid 12549 Utility theorem: index-independent form of scalar product df-vsca 12497. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |- 
 .s  = Slot  ( .s ` 
 ndx )
 
Theoremvscaslid 12550 Slot property of  .s. (Contributed by Jim Kingdon, 5-Feb-2023.)
 |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
 
Theoremlmodstrd 12551 A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  W Struct  <.
 1 ,  6 >.
 )
 
Theoremlmodbased 12552 The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  B  =  ( Base `  W )
 )
 
Theoremlmodplusgd 12553 The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  .+  =  ( +g  `  W )
 )
 
Theoremlmodscad 12554 The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  F  =  (Scalar `  W )
 )
 
Theoremlmodvscad 12555 The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  .x.  =  ( .s `  W ) )
 
Theoremipndx 12556 Index value of the df-ip 12498 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( .i `  ndx )  =  8
 
Theoremipid 12557 Utility theorem: index-independent form of df-ip 12498. (Contributed by Mario Carneiro, 6-Oct-2013.)
 |- 
 .i  = Slot  ( .i ` 
 ndx )
 
Theoremipslid 12558 Slot property of  .i. (Contributed by Jim Kingdon, 7-Feb-2023.)
 |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
 
Theoremipsstrd 12559 A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  A Struct  <.
 1 ,  8 >.
 )
 
Theoremipsbased 12560 The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  B  =  ( Base `  A )
 )
 
Theoremipsaddgd 12561 The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  .+  =  ( +g  `  A )
 )
 
Theoremipsmulrd 12562 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  .X.  =  ( .r `  A ) )
 
Theoremipsscad 12563 The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  S  =  (Scalar `  A )
 )
 
Theoremipsvscad 12564 The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  .x.  =  ( .s `  A ) )
 
Theoremipsipd 12565 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  I  =  ( .i `  A ) )
 
Theoremtsetndx 12566 Index value of the df-tset 12499 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  (TopSet `  ndx )  =  9
 
Theoremtsetid 12567 Utility theorem: index-independent form of df-tset 12499. (Contributed by NM, 20-Oct-2012.)
 |- TopSet  = Slot  (TopSet `  ndx )
 
Theoremtsetslid 12568 Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.)
 |-  (TopSet  = Slot  (TopSet `  ndx )  /\  (TopSet `  ndx )  e.  NN )
 
Theoremtopgrpstrd 12569 A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  J  e.  X )   =>    |-  ( ph  ->  W Struct  <.
 1 ,  9 >.
 )
 
Theoremtopgrpbasd 12570 The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  J  e.  X )   =>    |-  ( ph  ->  B  =  ( Base `  W )
 )
 
Theoremtopgrpplusgd 12571 The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  J  e.  X )   =>    |-  ( ph  ->  .+  =  ( +g  `  W )
 )
 
Theoremtopgrptsetd 12572 The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  J  e.  X )   =>    |-  ( ph  ->  J  =  (TopSet `  W )
 )
 
Theoremplendx 12573 Index value of the df-ple 12500 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
 |-  ( le `  ndx )  = ; 1 0
 
Theorempleid 12574 Utility theorem: self-referencing, index-independent form of df-ple 12500. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
 |- 
 le  = Slot  ( le ` 
 ndx )
 
Theorempleslid 12575 Slot property of  le. (Contributed by Jim Kingdon, 9-Feb-2023.)
 |-  ( le  = Slot  ( le `  ndx )  /\  ( le `  ndx )  e.  NN )
 
Theoremdsndx 12576 Index value of the df-ds 12502 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( dist `  ndx )  = ; 1
 2
 
Theoremdsid 12577 Utility theorem: index-independent form of df-ds 12502. (Contributed by Mario Carneiro, 23-Dec-2013.)
 |- 
 dist  = Slot  ( dist `  ndx )
 
Theoremdsslid 12578 Slot property of  dist. (Contributed by Jim Kingdon, 6-May-2023.)
 |-  ( dist  = Slot  ( dist ` 
 ndx )  /\  ( dist `  ndx )  e. 
 NN )
 
6.1.3  Definition of the structure product
 
Syntaxcrest 12579 Extend class notation with the function returning a subspace topology.
 classt
 
Syntaxctopn 12580 Extend class notation with the topology extractor function.
 class  TopOpen
 
Definitiondf-rest 12581* Function returning the subspace topology induced by the topology  y and the set  x. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
 
Definitiondf-topn 12582 Define the topology extractor function. This differs from df-tset 12499 when a structure has been restricted using df-ress 12424; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  TopOpen  =  ( w  e. 
 _V  |->  ( (TopSet `  w )t  ( Base `  w )
 ) )
 
Theoremrestfn 12583 The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
 |-t  Fn  ( _V  X.  _V )
 
Theoremtopnfn 12584 The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  TopOpen 
 Fn  _V
 
Theoremrestval 12585* The subspace topology induced by the topology  J on the set  A. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
 |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A ) ) )
 
Theoremelrest 12586* The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
 |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
 
Theoremelrestr 12587 Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
 |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J ) 
 ->  ( A  i^i  S )  e.  ( Jt  S ) )
 
Theoremrestid2 12588 The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  J )
 
Theoremrestsspw 12589 The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( Jt  A )  C_  ~P A
 
Theoremrestid 12590 The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( J  e.  V  ->  ( Jt  X )  =  J )
 
Theoremtopnvalg 12591 Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
 |-  B  =  ( Base `  W )   &    |-  J  =  (TopSet `  W )   =>    |-  ( W  e.  V  ->  ( Jt  B )  =  (
 TopOpen `  W ) )
 
Theoremtopnidg 12592 Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  B  =  ( Base `  W )   &    |-  J  =  (TopSet `  W )   =>    |-  ( ( W  e.  V  /\  J  C_  ~P B )  ->  J  =  (
 TopOpen `  W ) )
 
Theoremtopnpropgd 12593 The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
 |-  ( ph  ->  ( Base `  K )  =  ( Base `  L )
 )   &    |-  ( ph  ->  (TopSet `  K )  =  (TopSet `  L ) )   &    |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   =>    |-  ( ph  ->  ( TopOpen `  K )  =  (
 TopOpen `  L ) )
 
Syntaxctg 12594 Extend class notation with a function that converts a basis to its corresponding topology.
 class  topGen
 
Syntaxcpt 12595 Extend class notation with a function whose value is a product topology.
 class  Xt_
 
Syntaxc0g 12596 Extend class notation with group identity element.
 class  0g
 
Syntaxcgsu 12597 Extend class notation to include finitely supported group sums.
 class  gsumg
 
Definitiondf-0g 12598* Define group identity element. Remark: this definition is required here because the symbol  0g is already used in df-gsum 12599. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.)
 |- 
 0g  =  ( g  e.  _V  |->  ( iota
 e ( e  e.  ( Base `  g )  /\  A. x  e.  ( Base `  g ) ( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g
 ) e )  =  x ) ) ) )
 
Definitiondf-gsum 12599* Define the group sum for the structure  G of a finite sequence of elements whose values are defined by the expression  B and whose set of indices is  A. It may be viewed as a product (if 
G is a multiplication), a sum (if 
G is an addition) or any other operation. The variable  k is normally a free variable in  B (i.e.,  B can be thought of as  B ( k )). The definition is meaningful in different contexts, depending on the size of the index set  A and each demanding different properties of  G.

1. If  A  =  (/) and  G has an identity element, then the sum equals this identity.

2. If  A  =  ( M ... N ) and 
G is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e.,  ( B ( 1 )  +  B
( 2 ) )  +  B ( 3 ), etc.

3. If  A is a finite set (or is nonzero for finitely many indices) and  G is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined.

4. If  A is an infinite set and  G is a Hausdorff topological group, then there is a meaningful sum, but  gsumg cannot handle this case. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.)

 |- 
 gsumg  =  ( w  e.  _V ,  f  e.  _V  |->  [_
 { x  e.  ( Base `  w )  | 
 A. y  e.  ( Base `  w ) ( ( x ( +g  `  w ) y )  =  y  /\  (
 y ( +g  `  w ) x )  =  y ) }  /  o ]_ if ( ran  f  C_  o ,  ( 0g
 `  w ) ,  if ( dom  f  e.  ran  ... ,  ( iota
 x E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m
 ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f
 ) `  n )
 ) ) ,  ( iota x E. g [. ( `' f " ( _V  \  o ) )  /  y ]. ( g : ( 1 ... ( `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  (
 f  o.  g ) ) `  ( `  y
 ) ) ) ) ) ) )
 
Definitiondf-topgen 12600* Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78. (Contributed by NM, 16-Jul-2006.)
 |-  topGen  =  ( x  e. 
 _V  |->  { y  |  y 
 C_  U. ( x  i^i  ~P y ) } )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >