ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfvssunirn GIF version

Theorem relfvssunirn 5512
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relfvssunirn (Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)

Proof of Theorem relfvssunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relelrn 4847 . . . . 5 ((Rel 𝐹𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹)
21ex 114 . . . 4 (Rel 𝐹 → (𝐴𝐹𝑥𝑥 ∈ ran 𝐹))
3 elssuni 3824 . . . 4 (𝑥 ∈ ran 𝐹𝑥 ran 𝐹)
42, 3syl6 33 . . 3 (Rel 𝐹 → (𝐴𝐹𝑥𝑥 ran 𝐹))
54alrimiv 1867 . 2 (Rel 𝐹 → ∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹))
6 fvss 5510 . 2 (∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹) → (𝐹𝐴) ⊆ ran 𝐹)
75, 6syl 14 1 (Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wcel 2141  wss 3121   cuni 3796   class class class wbr 3989  ran crn 4612  Rel wrel 4616  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-iota 5160  df-fv 5206
This theorem is referenced by:  relrnfvex  5514
  Copyright terms: Public domain W3C validator