Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relfvssunirn | GIF version |
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
relfvssunirn | ⊢ (Rel 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relelrn 4856 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹) | |
2 | 1 | ex 115 | . . . 4 ⊢ (Rel 𝐹 → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
3 | elssuni 3833 | . . . 4 ⊢ (𝑥 ∈ ran 𝐹 → 𝑥 ⊆ ∪ ran 𝐹) | |
4 | 2, 3 | syl6 33 | . . 3 ⊢ (Rel 𝐹 → (𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
5 | 4 | alrimiv 1872 | . 2 ⊢ (Rel 𝐹 → ∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
6 | fvss 5521 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
7 | 5, 6 | syl 14 | 1 ⊢ (Rel 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 ∈ wcel 2146 ⊆ wss 3127 ∪ cuni 3805 class class class wbr 3998 ran crn 4621 Rel wrel 4625 ‘cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-dm 4630 df-rn 4631 df-iota 5170 df-fv 5216 |
This theorem is referenced by: relrnfvex 5525 |
Copyright terms: Public domain | W3C validator |