| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relfvssunirn | GIF version | ||
| Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| relfvssunirn | ⊢ (Rel 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relelrn 4933 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹) | |
| 2 | 1 | ex 115 | . . . 4 ⊢ (Rel 𝐹 → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
| 3 | elssuni 3892 | . . . 4 ⊢ (𝑥 ∈ ran 𝐹 → 𝑥 ⊆ ∪ ran 𝐹) | |
| 4 | 2, 3 | syl6 33 | . . 3 ⊢ (Rel 𝐹 → (𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
| 5 | 4 | alrimiv 1898 | . 2 ⊢ (Rel 𝐹 → ∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
| 6 | fvss 5613 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
| 7 | 5, 6 | syl 14 | 1 ⊢ (Rel 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∈ wcel 2178 ⊆ wss 3174 ∪ cuni 3864 class class class wbr 4059 ran crn 4694 Rel wrel 4698 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: relrnfvex 5617 |
| Copyright terms: Public domain | W3C validator |