ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfvssunirn GIF version

Theorem relfvssunirn 5571
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relfvssunirn (Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)

Proof of Theorem relfvssunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relelrn 4899 . . . . 5 ((Rel 𝐹𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹)
21ex 115 . . . 4 (Rel 𝐹 → (𝐴𝐹𝑥𝑥 ∈ ran 𝐹))
3 elssuni 3864 . . . 4 (𝑥 ∈ ran 𝐹𝑥 ran 𝐹)
42, 3syl6 33 . . 3 (Rel 𝐹 → (𝐴𝐹𝑥𝑥 ran 𝐹))
54alrimiv 1885 . 2 (Rel 𝐹 → ∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹))
6 fvss 5569 . 2 (∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹) → (𝐹𝐴) ⊆ ran 𝐹)
75, 6syl 14 1 (Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wcel 2164  wss 3154   cuni 3836   class class class wbr 4030  ran crn 4661  Rel wrel 4665  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671  df-iota 5216  df-fv 5263
This theorem is referenced by:  relrnfvex  5573
  Copyright terms: Public domain W3C validator