ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfvssunirn GIF version

Theorem relfvssunirn 5577
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relfvssunirn (Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)

Proof of Theorem relfvssunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relelrn 4903 . . . . 5 ((Rel 𝐹𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹)
21ex 115 . . . 4 (Rel 𝐹 → (𝐴𝐹𝑥𝑥 ∈ ran 𝐹))
3 elssuni 3868 . . . 4 (𝑥 ∈ ran 𝐹𝑥 ran 𝐹)
42, 3syl6 33 . . 3 (Rel 𝐹 → (𝐴𝐹𝑥𝑥 ran 𝐹))
54alrimiv 1888 . 2 (Rel 𝐹 → ∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹))
6 fvss 5575 . 2 (∀𝑥(𝐴𝐹𝑥𝑥 ran 𝐹) → (𝐹𝐴) ⊆ ran 𝐹)
75, 6syl 14 1 (Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wcel 2167  wss 3157   cuni 3840   class class class wbr 4034  ran crn 4665  Rel wrel 4669  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675  df-iota 5220  df-fv 5267
This theorem is referenced by:  relrnfvex  5579
  Copyright terms: Public domain W3C validator