| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relfvssunirn | GIF version | ||
| Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| relfvssunirn | ⊢ (Rel 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relelrn 4903 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝑥) → 𝑥 ∈ ran 𝐹) | |
| 2 | 1 | ex 115 | . . . 4 ⊢ (Rel 𝐹 → (𝐴𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
| 3 | elssuni 3868 | . . . 4 ⊢ (𝑥 ∈ ran 𝐹 → 𝑥 ⊆ ∪ ran 𝐹) | |
| 4 | 2, 3 | syl6 33 | . . 3 ⊢ (Rel 𝐹 → (𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
| 5 | 4 | alrimiv 1888 | . 2 ⊢ (Rel 𝐹 → ∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹)) |
| 6 | fvss 5575 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ ∪ ran 𝐹) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
| 7 | 5, 6 | syl 14 | 1 ⊢ (Rel 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2167 ⊆ wss 3157 ∪ cuni 3840 class class class wbr 4034 ran crn 4665 Rel wrel 4669 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-dm 4674 df-rn 4675 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: relrnfvex 5579 |
| Copyright terms: Public domain | W3C validator |