ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrnfvex Unicode version

Theorem relrnfvex 5593
Description: If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relrnfvex  |-  ( ( Rel  F  /\  ran  F  e.  _V )  -> 
( F `  A
)  e.  _V )

Proof of Theorem relrnfvex
StepHypRef Expression
1 relfvssunirn 5591 . 2  |-  ( Rel 
F  ->  ( F `  A )  C_  U. ran  F )
2 uniexg 4485 . 2  |-  ( ran 
F  e.  _V  ->  U.
ran  F  e.  _V )
3 ssexg 4182 . 2  |-  ( ( ( F `  A
)  C_  U. ran  F  /\  U. ran  F  e. 
_V )  ->  ( F `  A )  e.  _V )
41, 2, 3syl2an 289 1  |-  ( ( Rel  F  /\  ran  F  e.  _V )  -> 
( F `  A
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   _Vcvv 2771    C_ wss 3165   U.cuni 3849   ran crn 4675   Rel wrel 4679   ` cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-dm 4684  df-rn 4685  df-iota 5231  df-fv 5278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator