ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrnfvex Unicode version

Theorem relrnfvex 5576
Description: If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relrnfvex  |-  ( ( Rel  F  /\  ran  F  e.  _V )  -> 
( F `  A
)  e.  _V )

Proof of Theorem relrnfvex
StepHypRef Expression
1 relfvssunirn 5574 . 2  |-  ( Rel 
F  ->  ( F `  A )  C_  U. ran  F )
2 uniexg 4474 . 2  |-  ( ran 
F  e.  _V  ->  U.
ran  F  e.  _V )
3 ssexg 4172 . 2  |-  ( ( ( F `  A
)  C_  U. ran  F  /\  U. ran  F  e. 
_V )  ->  ( F `  A )  e.  _V )
41, 2, 3syl2an 289 1  |-  ( ( Rel  F  /\  ran  F  e.  _V )  -> 
( F `  A
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   _Vcvv 2763    C_ wss 3157   U.cuni 3839   ran crn 4664   Rel wrel 4668   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-iota 5219  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator