ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrnfvex Unicode version

Theorem relrnfvex 5607
Description: If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relrnfvex  |-  ( ( Rel  F  /\  ran  F  e.  _V )  -> 
( F `  A
)  e.  _V )

Proof of Theorem relrnfvex
StepHypRef Expression
1 relfvssunirn 5605 . 2  |-  ( Rel 
F  ->  ( F `  A )  C_  U. ran  F )
2 uniexg 4494 . 2  |-  ( ran 
F  e.  _V  ->  U.
ran  F  e.  _V )
3 ssexg 4191 . 2  |-  ( ( ( F `  A
)  C_  U. ran  F  /\  U. ran  F  e. 
_V )  ->  ( F `  A )  e.  _V )
41, 2, 3syl2an 289 1  |-  ( ( Rel  F  /\  ran  F  e.  _V )  -> 
( F `  A
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2177   _Vcvv 2773    C_ wss 3170   U.cuni 3856   ran crn 4684   Rel wrel 4688   ` cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-dm 4693  df-rn 4694  df-iota 5241  df-fv 5288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator