Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relrnfvex | GIF version |
Description: If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
relrnfvex | ⊢ ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfvssunirn 5499 | . 2 ⊢ (Rel 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
2 | uniexg 4414 | . 2 ⊢ (ran 𝐹 ∈ V → ∪ ran 𝐹 ∈ V) | |
3 | ssexg 4118 | . 2 ⊢ (((𝐹‘𝐴) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) | |
4 | 1, 2, 3 | syl2an 287 | 1 ⊢ ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2135 Vcvv 2724 ⊆ wss 3114 ∪ cuni 3786 ran crn 4602 Rel wrel 4606 ‘cfv 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 ax-un 4408 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2726 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-opab 4041 df-xp 4607 df-rel 4608 df-cnv 4609 df-dm 4611 df-rn 4612 df-iota 5150 df-fv 5193 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |