| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relrnfvex | GIF version | ||
| Description: If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| relrnfvex | ⊢ ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfvssunirn 5610 | . 2 ⊢ (Rel 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
| 2 | uniexg 4499 | . 2 ⊢ (ran 𝐹 ∈ V → ∪ ran 𝐹 ∈ V) | |
| 3 | ssexg 4194 | . 2 ⊢ (((𝐹‘𝐴) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 ∪ cuni 3859 ran crn 4689 Rel wrel 4693 ‘cfv 5285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-xp 4694 df-rel 4695 df-cnv 4696 df-dm 4698 df-rn 4699 df-iota 5246 df-fv 5293 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |