ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrnfvex GIF version

Theorem relrnfvex 5336
Description: If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relrnfvex ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹𝐴) ∈ V)

Proof of Theorem relrnfvex
StepHypRef Expression
1 relfvssunirn 5334 . 2 (Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
2 uniexg 4275 . 2 (ran 𝐹 ∈ V → ran 𝐹 ∈ V)
3 ssexg 3984 . 2 (((𝐹𝐴) ⊆ ran 𝐹 ran 𝐹 ∈ V) → (𝐹𝐴) ∈ V)
41, 2, 3syl2an 284 1 ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1439  Vcvv 2620  wss 3000   cuni 3659  ran crn 4453  Rel wrel 4457  cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-xp 4458  df-rel 4459  df-cnv 4460  df-dm 4462  df-rn 4463  df-iota 4993  df-fv 5036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator