![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relrnfvex | GIF version |
Description: If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
relrnfvex | ⊢ ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfvssunirn 5334 | . 2 ⊢ (Rel 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
2 | uniexg 4275 | . 2 ⊢ (ran 𝐹 ∈ V → ∪ ran 𝐹 ∈ V) | |
3 | ssexg 3984 | . 2 ⊢ (((𝐹‘𝐴) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) | |
4 | 1, 2, 3 | syl2an 284 | 1 ⊢ ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1439 Vcvv 2620 ⊆ wss 3000 ∪ cuni 3659 ran crn 4453 Rel wrel 4457 ‘cfv 5028 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-xp 4458 df-rel 4459 df-cnv 4460 df-dm 4462 df-rn 4463 df-iota 4993 df-fv 5036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |