ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrnfvex GIF version

Theorem relrnfvex 5501
Description: If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relrnfvex ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹𝐴) ∈ V)

Proof of Theorem relrnfvex
StepHypRef Expression
1 relfvssunirn 5499 . 2 (Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
2 uniexg 4414 . 2 (ran 𝐹 ∈ V → ran 𝐹 ∈ V)
3 ssexg 4118 . 2 (((𝐹𝐴) ⊆ ran 𝐹 ran 𝐹 ∈ V) → (𝐹𝐴) ∈ V)
41, 2, 3syl2an 287 1 ((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2135  Vcvv 2724  wss 3114   cuni 3786  ran crn 4602  Rel wrel 4606  cfv 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2726  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-xp 4607  df-rel 4608  df-cnv 4609  df-dm 4611  df-rn 4612  df-iota 5150  df-fv 5193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator