Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvexg | Unicode version |
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
Ref | Expression |
---|---|
fvexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2720 | . . 3 | |
2 | fvssunirng 5476 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | rnexg 4844 | . . 3 | |
5 | uniexg 4394 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | ssexg 4099 | . 2 | |
8 | 3, 6, 7 | syl2anr 288 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2125 cvv 2709 wss 3098 cuni 3768 crn 4580 cfv 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-cnv 4587 df-dm 4589 df-rn 4590 df-iota 5128 df-fv 5171 |
This theorem is referenced by: fvex 5481 ovexg 5845 rdgivallem 6318 frecabex 6335 mapsnconst 6628 cc2lem 7165 addvalex 7743 uzennn 10313 absval 10878 climmpt 11174 strnfvnd 12149 ressid 12190 iscnp4 12557 cnpnei 12558 |
Copyright terms: Public domain | W3C validator |