| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvexg | Unicode version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 |
. . 3
| |
| 2 | fvssunirng 5604 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | rnexg 4952 |
. . 3
| |
| 5 | uniexg 4494 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | ssexg 4191 |
. 2
| |
| 8 | 3, 6, 7 | syl2anr 290 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-cnv 4691 df-dm 4693 df-rn 4694 df-iota 5241 df-fv 5288 |
| This theorem is referenced by: fvex 5609 ovexg 5991 rdgivallem 6480 frecabex 6497 mapsnconst 6794 cc2lem 7398 addvalex 7977 uzennn 10603 seq1g 10630 seqp1g 10633 seqclg 10639 seqm1g 10641 seqfeq4g 10698 lswwrd 11062 ccatlen 11074 ccatval2 11077 ccatvalfn 11080 eqs1 11105 swrdlen 11128 swrdfv 11129 swrdwrdsymbg 11140 swrdswrd 11181 absval 11387 climmpt 11686 strnfvnd 12927 prdsex 13176 prdsval 13180 prdsbaslemss 13181 prdsbas 13183 prdsplusgfval 13191 prdsmulrfval 13193 pwsplusgval 13202 pwsmulrval 13203 imasex 13212 imasival 13213 imasbas 13214 imasplusg 13215 imasmulr 13216 imasaddfnlemg 13221 imasaddvallemg 13222 gsumfzval 13298 gsumval2 13304 gsumsplit1r 13305 gsumprval 13306 gsumfzz 13402 gsumwsubmcl 13403 gsumfzcl 13406 grpsubval 13453 mulgval 13533 mulgfng 13535 mulgnngsum 13538 znval 14473 znle 14474 znbaslemnn 14476 znbas 14481 znzrhval 14484 znzrhfo 14485 znleval 14490 iscnp4 14765 cnpnei 14766 |
| Copyright terms: Public domain | W3C validator |