ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvexg Unicode version

Theorem fvexg 5505
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
Assertion
Ref Expression
fvexg  |-  ( ( F  e.  V  /\  A  e.  W )  ->  ( F `  A
)  e.  _V )

Proof of Theorem fvexg
StepHypRef Expression
1 elex 2737 . . 3  |-  ( A  e.  W  ->  A  e.  _V )
2 fvssunirng 5501 . . 3  |-  ( A  e.  _V  ->  ( F `  A )  C_ 
U. ran  F )
31, 2syl 14 . 2  |-  ( A  e.  W  ->  ( F `  A )  C_ 
U. ran  F )
4 rnexg 4869 . . 3  |-  ( F  e.  V  ->  ran  F  e.  _V )
5 uniexg 4417 . . 3  |-  ( ran 
F  e.  _V  ->  U.
ran  F  e.  _V )
64, 5syl 14 . 2  |-  ( F  e.  V  ->  U. ran  F  e.  _V )
7 ssexg 4121 . 2  |-  ( ( ( F `  A
)  C_  U. ran  F  /\  U. ran  F  e. 
_V )  ->  ( F `  A )  e.  _V )
83, 6, 7syl2anr 288 1  |-  ( ( F  e.  V  /\  A  e.  W )  ->  ( F `  A
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   _Vcvv 2726    C_ wss 3116   U.cuni 3789   ran crn 4605   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615  df-iota 5153  df-fv 5196
This theorem is referenced by:  fvex  5506  ovexg  5876  rdgivallem  6349  frecabex  6366  mapsnconst  6660  cc2lem  7207  addvalex  7785  uzennn  10371  absval  10943  climmpt  11241  strnfvnd  12414  ressid  12456  iscnp4  12858  cnpnei  12859
  Copyright terms: Public domain W3C validator