ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvexg Unicode version

Theorem fvexg 5480
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
Assertion
Ref Expression
fvexg  |-  ( ( F  e.  V  /\  A  e.  W )  ->  ( F `  A
)  e.  _V )

Proof of Theorem fvexg
StepHypRef Expression
1 elex 2720 . . 3  |-  ( A  e.  W  ->  A  e.  _V )
2 fvssunirng 5476 . . 3  |-  ( A  e.  _V  ->  ( F `  A )  C_ 
U. ran  F )
31, 2syl 14 . 2  |-  ( A  e.  W  ->  ( F `  A )  C_ 
U. ran  F )
4 rnexg 4844 . . 3  |-  ( F  e.  V  ->  ran  F  e.  _V )
5 uniexg 4394 . . 3  |-  ( ran 
F  e.  _V  ->  U.
ran  F  e.  _V )
64, 5syl 14 . 2  |-  ( F  e.  V  ->  U. ran  F  e.  _V )
7 ssexg 4099 . 2  |-  ( ( ( F `  A
)  C_  U. ran  F  /\  U. ran  F  e. 
_V )  ->  ( F `  A )  e.  _V )
83, 6, 7syl2anr 288 1  |-  ( ( F  e.  V  /\  A  e.  W )  ->  ( F `  A
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2125   _Vcvv 2709    C_ wss 3098   U.cuni 3768   ran crn 4580   ` cfv 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-cnv 4587  df-dm 4589  df-rn 4590  df-iota 5128  df-fv 5171
This theorem is referenced by:  fvex  5481  ovexg  5845  rdgivallem  6318  frecabex  6335  mapsnconst  6628  cc2lem  7165  addvalex  7743  uzennn  10313  absval  10878  climmpt  11174  strnfvnd  12149  ressid  12190  iscnp4  12557  cnpnei  12558
  Copyright terms: Public domain W3C validator