| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvexg | Unicode version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. . 3
| |
| 2 | fvssunirng 5641 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | rnexg 4988 |
. . 3
| |
| 5 | uniexg 4529 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | ssexg 4222 |
. 2
| |
| 8 | 3, 6, 7 | syl2anr 290 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: fvex 5646 ovexg 6034 rdgivallem 6525 frecabex 6542 mapsnconst 6839 cc2lem 7448 addvalex 8027 uzennn 10653 seq1g 10680 seqp1g 10683 seqclg 10689 seqm1g 10691 seqfeq4g 10748 lswwrd 11113 ccatlen 11125 ccatval2 11128 ccatvalfn 11131 eqs1 11156 swrdlen 11179 swrdfv 11180 swrdwrdsymbg 11191 swrdswrd 11232 absval 11507 climmpt 11806 strnfvnd 13047 prdsex 13297 prdsval 13301 prdsbaslemss 13302 prdsbas 13304 prdsplusgfval 13312 prdsmulrfval 13314 pwsplusgval 13323 pwsmulrval 13324 imasex 13333 imasival 13334 imasbas 13335 imasplusg 13336 imasmulr 13337 imasaddfnlemg 13342 imasaddvallemg 13343 gsumfzval 13419 gsumval2 13425 gsumsplit1r 13426 gsumprval 13427 gsumfzz 13523 gsumwsubmcl 13524 gsumfzcl 13527 grpsubval 13574 mulgval 13654 mulgfng 13656 mulgnngsum 13659 znval 14594 znle 14595 znbaslemnn 14597 znbas 14602 znzrhval 14605 znzrhfo 14606 znleval 14611 iscnp4 14886 cnpnei 14887 wlkvtxiedgg 16042 |
| Copyright terms: Public domain | W3C validator |