ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemex Unicode version

Theorem tfrcllemex 6187
Description: Lemma for tfrcl 6191. (Contributed by Jim Kingdon, 26-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcllemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfrcllembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) ) }
tfrcllembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfrcllembacc.4  |-  ( ph  ->  D  e.  X )
tfrcllembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
g `  w )  =  ( G `  ( g  |`  w
) ) ) )
Assertion
Ref Expression
tfrcllemex  |-  ( ph  ->  E. f ( f : D --> S  /\  A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u
) ) ) )
Distinct variable groups:    A, f, g, h, x, y, z    D, f, g, x, y   
f, G, x, y    S, f, x, y    f, X, x    ph, f, g, h, x, y, z    B, f, g, h, z   
u, B, f    w, B, g, z    D, h, z    u, D, w   
y, w    h, G, z    u, G, w    S, g, h, z    z, X    ph, w
Allowed substitution hints:    ph( u)    A( w, u)    B( x, y)    S( w, u)    F( x, y, z, w, u, f, g, h)    G( g)    X( y, w, u, g, h)

Proof of Theorem tfrcllemex
StepHypRef Expression
1 tfrcl.f . . . 4  |-  F  = recs ( G )
2 tfrcl.g . . . 4  |-  ( ph  ->  Fun  G )
3 tfrcl.x . . . 4  |-  ( ph  ->  Ord  X )
4 tfrcl.ex . . . 4  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
5 tfrcllemsucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
6 tfrcllembacc.3 . . . 4  |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) ) }
7 tfrcllembacc.u . . . 4  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfrcllembacc.4 . . . 4  |-  ( ph  ->  D  e.  X )
9 tfrcllembacc.5 . . . 4  |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
g `  w )  =  ( G `  ( g  |`  w
) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembex 6185 . . 3  |-  ( ph  ->  B  e.  _V )
11 uniexg 4299 . . 3  |-  ( B  e.  _V  ->  U. B  e.  _V )
1210, 11syl 14 . 2  |-  ( ph  ->  U. B  e.  _V )
131, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembfn 6184 . . 3  |-  ( ph  ->  U. B : D --> S )
141, 2, 3, 4, 5, 6, 7, 8, 9tfrcllemubacc 6186 . . 3  |-  ( ph  ->  A. u  e.  D  ( U. B `  u
)  =  ( G `
 ( U. B  |`  u ) ) )
1513, 14jca 302 . 2  |-  ( ph  ->  ( U. B : D
--> S  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) ) )
16 feq1 5191 . . . 4  |-  ( f  =  U. B  -> 
( f : D --> S 
<-> 
U. B : D --> S ) )
17 fveq1 5352 . . . . . 6  |-  ( f  =  U. B  -> 
( f `  u
)  =  ( U. B `  u )
)
18 reseq1 4749 . . . . . . 7  |-  ( f  =  U. B  -> 
( f  |`  u
)  =  ( U. B  |`  u ) )
1918fveq2d 5357 . . . . . 6  |-  ( f  =  U. B  -> 
( G `  (
f  |`  u ) )  =  ( G `  ( U. B  |`  u
) ) )
2017, 19eqeq12d 2114 . . . . 5  |-  ( f  =  U. B  -> 
( ( f `  u )  =  ( G `  ( f  |`  u ) )  <->  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) ) )
2120ralbidv 2396 . . . 4  |-  ( f  =  U. B  -> 
( A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u ) )  <->  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) ) )
2216, 21anbi12d 460 . . 3  |-  ( f  =  U. B  -> 
( ( f : D --> S  /\  A. u  e.  D  (
f `  u )  =  ( G `  ( f  |`  u
) ) )  <->  ( U. B : D --> S  /\  A. u  e.  D  ( U. B `  u
)  =  ( G `
 ( U. B  |`  u ) ) ) ) )
2322spcegv 2729 . 2  |-  ( U. B  e.  _V  ->  ( ( U. B : D
--> S  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) )  ->  E. f ( f : D --> S  /\  A. u  e.  D  (
f `  u )  =  ( G `  ( f  |`  u
) ) ) ) )
2412, 15, 23sylc 62 1  |-  ( ph  ->  E. f ( f : D --> S  /\  A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 930    = wceq 1299   E.wex 1436    e. wcel 1448   {cab 2086   A.wral 2375   E.wrex 2376   _Vcvv 2641    u. cun 3019   {csn 3474   <.cop 3477   U.cuni 3683   Ord word 4222   suc csuc 4225    |` cres 4479   Fun wfun 5053   -->wf 5055   ` cfv 5059  recscrecs 6131
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-recs 6132
This theorem is referenced by:  tfrcllemaccex  6188
  Copyright terms: Public domain W3C validator