ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemex Unicode version

Theorem tfr1onlemex 6244
Description: Lemma for tfr1on 6247. (Contributed by Jim Kingdon, 16-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlemex  |-  ( ph  ->  E. f ( f  Fn  D  /\  A. u  e.  D  (
f `  u )  =  ( G `  ( f  |`  u
) ) ) )
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z    B, f, g, h, w, z    u, B, f, w    D, h, w, z, x    u, D    h, G, z, y   
u, G, w    g, X, z    ph, w    y, w
Allowed substitution hints:    ph( y, u)    A( y, w, u)    B( x, y)    D( y)    F( x, y, z, w, u, f, g, h)    G( g)    X( y, w, u, h)

Proof of Theorem tfr1onlemex
StepHypRef Expression
1 tfr1on.f . . . 4  |-  F  = recs ( G )
2 tfr1on.g . . . 4  |-  ( ph  ->  Fun  G )
3 tfr1on.x . . . 4  |-  ( ph  ->  Ord  X )
4 tfr1on.ex . . . 4  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
5 tfr1onlemsucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
6 tfr1onlembacc.3 . . . 4  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
7 tfr1onlembacc.u . . . 4  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfr1onlembacc.4 . . . 4  |-  ( ph  ->  D  e.  X )
9 tfr1onlembacc.5 . . . 4  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembex 6242 . . 3  |-  ( ph  ->  B  e.  _V )
11 uniexg 4361 . . 3  |-  ( B  e.  _V  ->  U. B  e.  _V )
1210, 11syl 14 . 2  |-  ( ph  ->  U. B  e.  _V )
131, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembfn 6241 . . 3  |-  ( ph  ->  U. B  Fn  D
)
141, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlemubacc 6243 . . 3  |-  ( ph  ->  A. u  e.  D  ( U. B `  u
)  =  ( G `
 ( U. B  |`  u ) ) )
1513, 14jca 304 . 2  |-  ( ph  ->  ( U. B  Fn  D  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) ) )
16 fneq1 5211 . . . 4  |-  ( f  =  U. B  -> 
( f  Fn  D  <->  U. B  Fn  D ) )
17 fveq1 5420 . . . . . 6  |-  ( f  =  U. B  -> 
( f `  u
)  =  ( U. B `  u )
)
18 reseq1 4813 . . . . . . 7  |-  ( f  =  U. B  -> 
( f  |`  u
)  =  ( U. B  |`  u ) )
1918fveq2d 5425 . . . . . 6  |-  ( f  =  U. B  -> 
( G `  (
f  |`  u ) )  =  ( G `  ( U. B  |`  u
) ) )
2017, 19eqeq12d 2154 . . . . 5  |-  ( f  =  U. B  -> 
( ( f `  u )  =  ( G `  ( f  |`  u ) )  <->  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) ) )
2120ralbidv 2437 . . . 4  |-  ( f  =  U. B  -> 
( A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u ) )  <->  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) ) )
2216, 21anbi12d 464 . . 3  |-  ( f  =  U. B  -> 
( ( f  Fn  D  /\  A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u ) ) )  <-> 
( U. B  Fn  D  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) ) ) )
2322spcegv 2774 . 2  |-  ( U. B  e.  _V  ->  ( ( U. B  Fn  D  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) )  ->  E. f
( f  Fn  D  /\  A. u  e.  D  ( f `  u
)  =  ( G `
 ( f  |`  u ) ) ) ) )
2412, 15, 23sylc 62 1  |-  ( ph  ->  E. f ( f  Fn  D  /\  A. u  e.  D  (
f `  u )  =  ( G `  ( f  |`  u
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   _Vcvv 2686    u. cun 3069   {csn 3527   <.cop 3530   U.cuni 3736   Ord word 4284   suc csuc 4287    |` cres 4541   Fun wfun 5117    Fn wfn 5118   ` cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-recs 6202
This theorem is referenced by:  tfr1onlemaccex  6245
  Copyright terms: Public domain W3C validator