ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemex Unicode version

Theorem tfr1onlemex 6405
Description: Lemma for tfr1on 6408. (Contributed by Jim Kingdon, 16-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlemex  |-  ( ph  ->  E. f ( f  Fn  D  /\  A. u  e.  D  (
f `  u )  =  ( G `  ( f  |`  u
) ) ) )
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z    B, f, g, h, w, z    u, B, f, w    D, h, w, z, x    u, D    h, G, z, y   
u, G, w    g, X, z    ph, w    y, w
Allowed substitution hints:    ph( y, u)    A( y, w, u)    B( x, y)    D( y)    F( x, y, z, w, u, f, g, h)    G( g)    X( y, w, u, h)

Proof of Theorem tfr1onlemex
StepHypRef Expression
1 tfr1on.f . . . 4  |-  F  = recs ( G )
2 tfr1on.g . . . 4  |-  ( ph  ->  Fun  G )
3 tfr1on.x . . . 4  |-  ( ph  ->  Ord  X )
4 tfr1on.ex . . . 4  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
5 tfr1onlemsucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
6 tfr1onlembacc.3 . . . 4  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
7 tfr1onlembacc.u . . . 4  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfr1onlembacc.4 . . . 4  |-  ( ph  ->  D  e.  X )
9 tfr1onlembacc.5 . . . 4  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembex 6403 . . 3  |-  ( ph  ->  B  e.  _V )
11 uniexg 4474 . . 3  |-  ( B  e.  _V  ->  U. B  e.  _V )
1210, 11syl 14 . 2  |-  ( ph  ->  U. B  e.  _V )
131, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembfn 6402 . . 3  |-  ( ph  ->  U. B  Fn  D
)
141, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlemubacc 6404 . . 3  |-  ( ph  ->  A. u  e.  D  ( U. B `  u
)  =  ( G `
 ( U. B  |`  u ) ) )
1513, 14jca 306 . 2  |-  ( ph  ->  ( U. B  Fn  D  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) ) )
16 fneq1 5346 . . . 4  |-  ( f  =  U. B  -> 
( f  Fn  D  <->  U. B  Fn  D ) )
17 fveq1 5557 . . . . . 6  |-  ( f  =  U. B  -> 
( f `  u
)  =  ( U. B `  u )
)
18 reseq1 4940 . . . . . . 7  |-  ( f  =  U. B  -> 
( f  |`  u
)  =  ( U. B  |`  u ) )
1918fveq2d 5562 . . . . . 6  |-  ( f  =  U. B  -> 
( G `  (
f  |`  u ) )  =  ( G `  ( U. B  |`  u
) ) )
2017, 19eqeq12d 2211 . . . . 5  |-  ( f  =  U. B  -> 
( ( f `  u )  =  ( G `  ( f  |`  u ) )  <->  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) ) )
2120ralbidv 2497 . . . 4  |-  ( f  =  U. B  -> 
( A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u ) )  <->  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) ) )
2216, 21anbi12d 473 . . 3  |-  ( f  =  U. B  -> 
( ( f  Fn  D  /\  A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u ) ) )  <-> 
( U. B  Fn  D  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) ) ) )
2322spcegv 2852 . 2  |-  ( U. B  e.  _V  ->  ( ( U. B  Fn  D  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) )  ->  E. f
( f  Fn  D  /\  A. u  e.  D  ( f `  u
)  =  ( G `
 ( f  |`  u ) ) ) ) )
2412, 15, 23sylc 62 1  |-  ( ph  ->  E. f ( f  Fn  D  /\  A. u  e.  D  (
f `  u )  =  ( G `  ( f  |`  u
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763    u. cun 3155   {csn 3622   <.cop 3625   U.cuni 3839   Ord word 4397   suc csuc 4400    |` cres 4665   Fun wfun 5252    Fn wfn 5253   ` cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-recs 6363
This theorem is referenced by:  tfr1onlemaccex  6406
  Copyright terms: Public domain W3C validator