ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemex Unicode version

Theorem tfr1onlemex 6400
Description: Lemma for tfr1on 6403. (Contributed by Jim Kingdon, 16-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlemex  |-  ( ph  ->  E. f ( f  Fn  D  /\  A. u  e.  D  (
f `  u )  =  ( G `  ( f  |`  u
) ) ) )
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z    B, f, g, h, w, z    u, B, f, w    D, h, w, z, x    u, D    h, G, z, y   
u, G, w    g, X, z    ph, w    y, w
Allowed substitution hints:    ph( y, u)    A( y, w, u)    B( x, y)    D( y)    F( x, y, z, w, u, f, g, h)    G( g)    X( y, w, u, h)

Proof of Theorem tfr1onlemex
StepHypRef Expression
1 tfr1on.f . . . 4  |-  F  = recs ( G )
2 tfr1on.g . . . 4  |-  ( ph  ->  Fun  G )
3 tfr1on.x . . . 4  |-  ( ph  ->  Ord  X )
4 tfr1on.ex . . . 4  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
5 tfr1onlemsucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
6 tfr1onlembacc.3 . . . 4  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
7 tfr1onlembacc.u . . . 4  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfr1onlembacc.4 . . . 4  |-  ( ph  ->  D  e.  X )
9 tfr1onlembacc.5 . . . 4  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembex 6398 . . 3  |-  ( ph  ->  B  e.  _V )
11 uniexg 4470 . . 3  |-  ( B  e.  _V  ->  U. B  e.  _V )
1210, 11syl 14 . 2  |-  ( ph  ->  U. B  e.  _V )
131, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembfn 6397 . . 3  |-  ( ph  ->  U. B  Fn  D
)
141, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlemubacc 6399 . . 3  |-  ( ph  ->  A. u  e.  D  ( U. B `  u
)  =  ( G `
 ( U. B  |`  u ) ) )
1513, 14jca 306 . 2  |-  ( ph  ->  ( U. B  Fn  D  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) ) )
16 fneq1 5342 . . . 4  |-  ( f  =  U. B  -> 
( f  Fn  D  <->  U. B  Fn  D ) )
17 fveq1 5553 . . . . . 6  |-  ( f  =  U. B  -> 
( f `  u
)  =  ( U. B `  u )
)
18 reseq1 4936 . . . . . . 7  |-  ( f  =  U. B  -> 
( f  |`  u
)  =  ( U. B  |`  u ) )
1918fveq2d 5558 . . . . . 6  |-  ( f  =  U. B  -> 
( G `  (
f  |`  u ) )  =  ( G `  ( U. B  |`  u
) ) )
2017, 19eqeq12d 2208 . . . . 5  |-  ( f  =  U. B  -> 
( ( f `  u )  =  ( G `  ( f  |`  u ) )  <->  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) ) )
2120ralbidv 2494 . . . 4  |-  ( f  =  U. B  -> 
( A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u ) )  <->  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) ) ) )
2216, 21anbi12d 473 . . 3  |-  ( f  =  U. B  -> 
( ( f  Fn  D  /\  A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u ) ) )  <-> 
( U. B  Fn  D  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) ) ) )
2322spcegv 2848 . 2  |-  ( U. B  e.  _V  ->  ( ( U. B  Fn  D  /\  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) )  ->  E. f
( f  Fn  D  /\  A. u  e.  D  ( f `  u
)  =  ( G `
 ( f  |`  u ) ) ) ) )
2412, 15, 23sylc 62 1  |-  ( ph  ->  E. f ( f  Fn  D  /\  A. u  e.  D  (
f `  u )  =  ( G `  ( f  |`  u
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    u. cun 3151   {csn 3618   <.cop 3621   U.cuni 3835   Ord word 4393   suc csuc 4396    |` cres 4661   Fun wfun 5248    Fn wfn 5249   ` cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358
This theorem is referenced by:  tfr1onlemaccex  6401
  Copyright terms: Public domain W3C validator