![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reseq1 | GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3329 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 4637 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
3 | df-res 4637 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 1, 2, 3 | 3eqtr4g 2235 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 Vcvv 2737 ∩ cin 3128 × cxp 4623 ↾ cres 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-in 3135 df-res 4637 |
This theorem is referenced by: reseq1i 4902 reseq1d 4905 imaeq1 4964 relcoi1 5159 tfr0dm 6320 tfrlemiex 6329 tfr1onlemex 6345 tfr1onlemaccex 6346 tfrcllemsucaccv 6352 tfrcllembxssdm 6354 tfrcllemex 6358 tfrcllemaccex 6359 tfrcllemres 6360 pmresg 6673 lmbr 13584 |
Copyright terms: Public domain | W3C validator |