| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reseq1 | GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ineq1 3357 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 4675 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 3 | df-res 4675 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 4 | 1, 2, 3 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 Vcvv 2763 ∩ cin 3156 × cxp 4661 ↾ cres 4665 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-res 4675 | 
| This theorem is referenced by: reseq1i 4942 reseq1d 4945 imaeq1 5004 relcoi1 5201 tfr0dm 6380 tfrlemiex 6389 tfr1onlemex 6405 tfr1onlemaccex 6406 tfrcllemsucaccv 6412 tfrcllembxssdm 6414 tfrcllemex 6418 tfrcllemaccex 6419 tfrcllemres 6420 pmresg 6735 lmbr 14449 | 
| Copyright terms: Public domain | W3C validator |