ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1 GIF version

Theorem reseq1 4677
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
reseq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem reseq1
StepHypRef Expression
1 ineq1 3183 . 2 (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V)))
2 df-res 4425 . 2 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
3 df-res 4425 . 2 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
41, 2, 33eqtr4g 2142 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1287  Vcvv 2615  cin 2987   × cxp 4411  cres 4415
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-in 2994  df-res 4425
This theorem is referenced by:  reseq1i  4679  reseq1d  4682  imaeq1  4738  relcoi1  4930  tfr0dm  6043  tfrlemiex  6052  tfr1onlemex  6068  tfr1onlemaccex  6069  tfrcllemsucaccv  6075  tfrcllembxssdm  6077  tfrcllemex  6081  tfrcllemaccex  6082  tfrcllemres  6083  pmresg  6387
  Copyright terms: Public domain W3C validator