ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1 GIF version

Theorem reseq1 4900
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
reseq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem reseq1
StepHypRef Expression
1 ineq1 3329 . 2 (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V)))
2 df-res 4637 . 2 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
3 df-res 4637 . 2 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
41, 2, 33eqtr4g 2235 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  Vcvv 2737  cin 3128   × cxp 4623  cres 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-in 3135  df-res 4637
This theorem is referenced by:  reseq1i  4902  reseq1d  4905  imaeq1  4964  relcoi1  5159  tfr0dm  6320  tfrlemiex  6329  tfr1onlemex  6345  tfr1onlemaccex  6346  tfrcllemsucaccv  6352  tfrcllembxssdm  6354  tfrcllemex  6358  tfrcllemaccex  6359  tfrcllemres  6360  pmresg  6673  lmbr  13584
  Copyright terms: Public domain W3C validator