ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiex Unicode version

Theorem tfrlemiex 6440
Description: Lemma for tfrlemi1 6441. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemiex  |-  ( ph  ->  E. f ( f  Fn  x  /\  A. u  e.  x  (
f `  u )  =  ( F `  ( f  |`  u
) ) ) )
Distinct variable groups:    f, g, h, u, w, x, y, z, A    f, F, g, h, u, w, x, y, z    ph, w, y    u, B, w, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, u, f)    B( x, y)

Proof of Theorem tfrlemiex
StepHypRef Expression
1 tfrlemisucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
2 tfrlemisucfn.2 . . . 4  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
3 tfrlemi1.3 . . . 4  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
4 tfrlemi1.4 . . . 4  |-  ( ph  ->  x  e.  On )
5 tfrlemi1.5 . . . 4  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
61, 2, 3, 4, 5tfrlemibex 6438 . . 3  |-  ( ph  ->  B  e.  _V )
7 uniexg 4504 . . 3  |-  ( B  e.  _V  ->  U. B  e.  _V )
86, 7syl 14 . 2  |-  ( ph  ->  U. B  e.  _V )
91, 2, 3, 4, 5tfrlemibfn 6437 . . 3  |-  ( ph  ->  U. B  Fn  x
)
101, 2, 3, 4, 5tfrlemiubacc 6439 . . 3  |-  ( ph  ->  A. u  e.  x  ( U. B `  u
)  =  ( F `
 ( U. B  |`  u ) ) )
119, 10jca 306 . 2  |-  ( ph  ->  ( U. B  Fn  x  /\  A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u ) ) ) )
12 fneq1 5381 . . . 4  |-  ( f  =  U. B  -> 
( f  Fn  x  <->  U. B  Fn  x ) )
13 fveq1 5598 . . . . . 6  |-  ( f  =  U. B  -> 
( f `  u
)  =  ( U. B `  u )
)
14 reseq1 4972 . . . . . . 7  |-  ( f  =  U. B  -> 
( f  |`  u
)  =  ( U. B  |`  u ) )
1514fveq2d 5603 . . . . . 6  |-  ( f  =  U. B  -> 
( F `  (
f  |`  u ) )  =  ( F `  ( U. B  |`  u
) ) )
1613, 15eqeq12d 2222 . . . . 5  |-  ( f  =  U. B  -> 
( ( f `  u )  =  ( F `  ( f  |`  u ) )  <->  ( U. B `  u )  =  ( F `  ( U. B  |`  u
) ) ) )
1716ralbidv 2508 . . . 4  |-  ( f  =  U. B  -> 
( A. u  e.  x  ( f `  u )  =  ( F `  ( f  |`  u ) )  <->  A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u
) ) ) )
1812, 17anbi12d 473 . . 3  |-  ( f  =  U. B  -> 
( ( f  Fn  x  /\  A. u  e.  x  ( f `  u )  =  ( F `  ( f  |`  u ) ) )  <-> 
( U. B  Fn  x  /\  A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u ) ) ) ) )
1918spcegv 2868 . 2  |-  ( U. B  e.  _V  ->  ( ( U. B  Fn  x  /\  A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u ) ) )  ->  E. f
( f  Fn  x  /\  A. u  e.  x  ( f `  u
)  =  ( F `
 ( f  |`  u ) ) ) ) )
208, 11, 19sylc 62 1  |-  ( ph  ->  E. f ( f  Fn  x  /\  A. u  e.  x  (
f `  u )  =  ( F `  ( f  |`  u
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   _Vcvv 2776    u. cun 3172   {csn 3643   <.cop 3646   U.cuni 3864   Oncon0 4428    |` cres 4695   Fun wfun 5284    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414
This theorem is referenced by:  tfrlemi1  6441
  Copyright terms: Public domain W3C validator