Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riinint | GIF version |
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
riinint | ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 4128 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝑆 ∈ V) | |
2 | 1 | expcom 115 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (𝑆 ⊆ 𝑋 → 𝑆 ∈ V)) |
3 | 2 | ralimdv 2538 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 → ∀𝑘 ∈ 𝐼 𝑆 ∈ V)) |
4 | 3 | imp 123 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∀𝑘 ∈ 𝐼 𝑆 ∈ V) |
5 | dfiin3g 4869 | . . . 4 ⊢ (∀𝑘 ∈ 𝐼 𝑆 ∈ V → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) |
7 | 6 | ineq2d 3328 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
8 | intun 3862 | . . 3 ⊢ ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (∩ {𝑋} ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) | |
9 | intsng 3865 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑋} = 𝑋) | |
10 | 9 | adantr 274 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ {𝑋} = 𝑋) |
11 | 10 | ineq1d 3327 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (∩ {𝑋} ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
12 | 8, 11 | eqtrid 2215 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆)) = (𝑋 ∩ ∩ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
13 | 7, 12 | eqtr4d 2206 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ∪ cun 3119 ∩ cin 3120 ⊆ wss 3121 {csn 3583 ∩ cint 3831 ∩ ciin 3874 ↦ cmpt 4050 ran crn 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-int 3832 df-iin 3876 df-br 3990 df-opab 4051 df-mpt 4052 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |