ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinint GIF version

Theorem riinint 4928
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
riinint ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
Distinct variable groups:   𝑘,𝑉   𝑘,𝑋
Allowed substitution hints:   𝑆(𝑘)   𝐼(𝑘)

Proof of Theorem riinint
StepHypRef Expression
1 ssexg 4173 . . . . . . 7 ((𝑆𝑋𝑋𝑉) → 𝑆 ∈ V)
21expcom 116 . . . . . 6 (𝑋𝑉 → (𝑆𝑋𝑆 ∈ V))
32ralimdv 2565 . . . . 5 (𝑋𝑉 → (∀𝑘𝐼 𝑆𝑋 → ∀𝑘𝐼 𝑆 ∈ V))
43imp 124 . . . 4 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ∀𝑘𝐼 𝑆 ∈ V)
5 dfiin3g 4925 . . . 4 (∀𝑘𝐼 𝑆 ∈ V → 𝑘𝐼 𝑆 = ran (𝑘𝐼𝑆))
64, 5syl 14 . . 3 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → 𝑘𝐼 𝑆 = ran (𝑘𝐼𝑆))
76ineq2d 3365 . 2 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = (𝑋 ran (𝑘𝐼𝑆)))
8 intun 3906 . . 3 ({𝑋} ∪ ran (𝑘𝐼𝑆)) = ( {𝑋} ∩ ran (𝑘𝐼𝑆))
9 intsng 3909 . . . . 5 (𝑋𝑉 {𝑋} = 𝑋)
109adantr 276 . . . 4 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → {𝑋} = 𝑋)
1110ineq1d 3364 . . 3 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ( {𝑋} ∩ ran (𝑘𝐼𝑆)) = (𝑋 ran (𝑘𝐼𝑆)))
128, 11eqtrid 2241 . 2 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ({𝑋} ∪ ran (𝑘𝐼𝑆)) = (𝑋 ran (𝑘𝐼𝑆)))
137, 12eqtr4d 2232 1 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cun 3155  cin 3156  wss 3157  {csn 3623   cint 3875   ciin 3918  cmpt 4095  ran crn 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-int 3876  df-iin 3920  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator