ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rninxp Unicode version

Theorem rninxp 5074
Description: Range of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rninxp  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x C
y )
Distinct variable groups:    x, y, A   
y, B    x, C, y
Allowed substitution hint:    B( x)

Proof of Theorem rninxp
StepHypRef Expression
1 dfss3 3147 . 2  |-  ( B 
C_  ran  ( C  |`  A )  <->  A. y  e.  B  y  e.  ran  ( C  |`  A ) )
2 ssrnres 5073 . 2  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )
3 df-ima 4641 . . . . 5  |-  ( C
" A )  =  ran  ( C  |`  A )
43eleq2i 2244 . . . 4  |-  ( y  e.  ( C " A )  <->  y  e.  ran  ( C  |`  A ) )
5 vex 2742 . . . . 5  |-  y  e. 
_V
65elima 4977 . . . 4  |-  ( y  e.  ( C " A )  <->  E. x  e.  A  x C
y )
74, 6bitr3i 186 . . 3  |-  ( y  e.  ran  ( C  |`  A )  <->  E. x  e.  A  x C
y )
87ralbii 2483 . 2  |-  ( A. y  e.  B  y  e.  ran  ( C  |`  A )  <->  A. y  e.  B  E. x  e.  A  x C
y )
91, 2, 83bitr3i 210 1  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x C
y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    i^i cin 3130    C_ wss 3131   class class class wbr 4005    X. cxp 4626   ran crn 4629    |` cres 4630   "cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  dminxp  5075  fncnv  5284
  Copyright terms: Public domain W3C validator