ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rninxp Unicode version

Theorem rninxp 5171
Description: Range of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rninxp  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x C
y )
Distinct variable groups:    x, y, A   
y, B    x, C, y
Allowed substitution hint:    B( x)

Proof of Theorem rninxp
StepHypRef Expression
1 dfss3 3213 . 2  |-  ( B 
C_  ran  ( C  |`  A )  <->  A. y  e.  B  y  e.  ran  ( C  |`  A ) )
2 ssrnres 5170 . 2  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )
3 df-ima 4731 . . . . 5  |-  ( C
" A )  =  ran  ( C  |`  A )
43eleq2i 2296 . . . 4  |-  ( y  e.  ( C " A )  <->  y  e.  ran  ( C  |`  A ) )
5 vex 2802 . . . . 5  |-  y  e. 
_V
65elima 5072 . . . 4  |-  ( y  e.  ( C " A )  <->  E. x  e.  A  x C
y )
74, 6bitr3i 186 . . 3  |-  ( y  e.  ran  ( C  |`  A )  <->  E. x  e.  A  x C
y )
87ralbii 2536 . 2  |-  ( A. y  e.  B  y  e.  ran  ( C  |`  A )  <->  A. y  e.  B  E. x  e.  A  x C
y )
91, 2, 83bitr3i 210 1  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x C
y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   class class class wbr 4082    X. cxp 4716   ran crn 4719    |` cres 4720   "cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  dminxp  5172  fncnv  5386
  Copyright terms: Public domain W3C validator