ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rninxp Unicode version

Theorem rninxp 5135
Description: Range of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rninxp  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x C
y )
Distinct variable groups:    x, y, A   
y, B    x, C, y
Allowed substitution hint:    B( x)

Proof of Theorem rninxp
StepHypRef Expression
1 dfss3 3186 . 2  |-  ( B 
C_  ran  ( C  |`  A )  <->  A. y  e.  B  y  e.  ran  ( C  |`  A ) )
2 ssrnres 5134 . 2  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )
3 df-ima 4696 . . . . 5  |-  ( C
" A )  =  ran  ( C  |`  A )
43eleq2i 2273 . . . 4  |-  ( y  e.  ( C " A )  <->  y  e.  ran  ( C  |`  A ) )
5 vex 2776 . . . . 5  |-  y  e. 
_V
65elima 5036 . . . 4  |-  ( y  e.  ( C " A )  <->  E. x  e.  A  x C
y )
74, 6bitr3i 186 . . 3  |-  ( y  e.  ran  ( C  |`  A )  <->  E. x  e.  A  x C
y )
87ralbii 2513 . 2  |-  ( A. y  e.  B  y  e.  ran  ( C  |`  A )  <->  A. y  e.  B  E. x  e.  A  x C
y )
91, 2, 83bitr3i 210 1  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x C
y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486    i^i cin 3169    C_ wss 3170   class class class wbr 4051    X. cxp 4681   ran crn 4684    |` cres 4685   "cima 4686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696
This theorem is referenced by:  dminxp  5136  fncnv  5349
  Copyright terms: Public domain W3C validator